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Abstract

Wireless Sensor Network (WSN) is an evolving technology enabled by improve-
ments in technology. A WSN is a wireless network of nodes that are small in size,
and poses challenges like limited power supply and processing power, and lossy
radio links. These networks are often used to collect data from sensors at mul-
tiple locations. In order to increase lifetime these devices must minimize power
consumption. The lossy links between poses challenges that normal computer net-
work routing protocols does not solve very well. IPv6 Routing Protocol for Low-
Power and Lossy Networks (RPL) is a routing protocol designed specifically for
WSN, and is made for communication flows that are normal in WSNs. RPL uses
an Objective Function (OF) in order to optimize routes, which enables different
optimization objectives.

In this thesis a WSN using RPL is implemented and deployed. RPL specifies
the use of an OF, which uses metrics in order to fulfill its optimization goals. This
thesis implements RPL in TinyOS, an operating system designed specifically for
embedded systems like WSNs. This implementation proposes to use LQI, an link
quality indicator for 802.15.4 radios which are often used in WSNs, as an initial
value to the Estimated Transmission Count (ETX). The initial is an improvement
on other implementation using ETX in that it passively estimates an ETX for all
nodes. Nodes thus have an indication as to how good the link towards nodes that
have not been tested is. This estimation can also be kept up to date for possible
parents that are not actively tested. My test shows that proper calculation from
LQI to ETX is very important for this to provide good results.

The resulting implementation is used in a deployed network consisting of 13
nodes that measure temperature and humidity in the church in Laksevåg. The
tested values for the LQI to ETX conversion was made very conservative in order
to minimize loss. This resulted in routes where the hop count was very high,
compared to routes that were selected with a different calculation, which showed
shorter routes in terms of hop, while still providing a high delivery ratio. The LQI
to ETX values need to be set correctly in order to provide the wanted routes. This
is left for future work.
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Chapter 1

Introduction

Advancements in technology have enabled the use of technology in new areas.
Wireless Sensor Networks consists of small devices. These devices are often
spread out, and enacts in a wireless self-organized network. These networks often
gather information from their surroundings (e.g., temperature, humidity), which
are relayed through the network. Because of their size, these devices operate with
limited resources, they are often battery operated, have low memory and processing
resources, and utilizes lossy radio links. Many normal computer and computer
network solutions do not have these constraints, and therefore does not translate
very well to the requirements and limitations of sensor networks. One example of
this is network routing protocols. New solutions are therefore created with these
limitations in mind. One example of this is the dynamic routing protocol IPv6
Routing Protocol for Low-Power and Lossy Networks (RPL). This thesis will focus
on data-collection WSNs. These are networks where nodes report information to a
common point, a base station.

1.1 Overview

This thesis will introduce WSN concepts and technology in chapter 2. The RPL
routing protocol will thereafter be explained in chapter 3. The IRIS that will be
used to implement and deploy a WSN with RPL is then described in chapter 4. An
Objective Function (OF) is chosen in chapter 5. The OF is used by RPL to optimize
routes based on given criteria. This chapter also presents measurements on links
using the IRIS nodes, which is used to select the optimization results used by the
OF. TinyOS is an operating system specifically made for low powered devices like
the ones used in WSN. TinyOS will be used to implement a WSN with RPL and
data measuring capabilities. Chapter 6 introduces TinyOS, and gives an overview
over a TinyOS application. TinyOS components that have been used are also
described. The resulting implementation of RPL, a data-forwarding layer, and a
measuring application will be described in chapter 7. Chapter 8 thereafter describes
the deployment of the WSN. Results and experiences from this deployment are also
discussed in this chapter.





Chapter 2

Wireless Sensor Networks

This chapter introduces Wireless Sensor Networks (WSN). Some applications and
a general introduction is given in section 2.1. The basic building bricks, sensor
nodes, are thereafter explained in section 2.2. Base stations, used to connect WSNs
to other networks or computers, are described in section 2.3. Different models on
data reporting used by WSNs are then described in section 2.3. Section 2.5 lastly
describes different topologies and data flows often used in WSNs.

2.1 Introduction

The advancements in technology have enabled us to make devices that are
inexpensive, small, and require very little power to operate. New applications are
made possible through this technology. Wireless Sensor Network(WSN) is one of
the technologies that has been realized because of this. Alot of research has been,
and is still being done,in the area of Wireless Sensor Networks. WSNs consist
of sensor nodes, these sensor nodes are low cost devices that often are small in
size. They have the ability to sense the environment, process these readings and
communicate this information to wirelessly other nodes. These readings might
include temperature, light intensity, vibrations, pressure and movement.

The small node size makes it possible for nodes to be discreet in its
environment. Combined with the low sensor node price, it is feasible to deploy a
high density of nodes in an environment (e.g., up to several dozen/m3). This makes
high-resolution sensing possible. The information is gathered and centralized by
the use of wireless communication between the sensor nodes.

Example uses of WSNs:
• Forest fire detection – Detects and alarms when a forest fire has started.
• Toxic detection – May be used by military for threats, or by civilian in areas

in danger of toxic spills.
• Control of light and temperature – Used in indoor environment to control

light, and temperature conditions based on the location of people.
• Building Monitoring – Used to monitor buildings and their structural

movement.
The areas where a sensor network is to be deployed might be unavailable (e.g.,

behind enemy lines, in toxic areas), or hard to access. Structured deployment
might not be possible, and sensors nodes can for instance be deployed by airdrop



2.2. SENSOR NODES

Power
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Figure 2.1: "Overview of a sensor node"

from plane or helicopter. In scenarios like this, there is neither any pre-existing
infrastructure, nor any structure to nodes placement. A WSN therefore needs to be
self-organized. Network topology has to be self-established, and be able to adapt
to changes in the network. A WSN often contains a base station, also called a root
or a sink. The base station might act as a gateway to other networks, or be the
destination for the sensor information.

The low price and small size of sensor nodes have advantages, but also
drawbacks. Batteries are often the only possible power source for a sensor
node, and in many situations recharging or replacement of batteries is impossible.
Available power in a battery is dependent on its physical size. The batteries are
limited by the size of the sensors nodes, which should often be small. This limits
the available power. It is valuable to gather information for as long as possible.
The nodes should therefore be energy efficient.

Network lifetime is often regarded one of the most important metrics in
evaluating sensor networks. There are many different definitions on lifetime, which
are be based on priorities such as: number of nodes that are alive, or sensor
coverage [2]. Lifetime improvements can be applied to the operation of single
nodes and to the network as a whole. This can for example be done through making
nodes sleep when they are not in use, use Media Access Control(MAC) layers that
minimizes number of retransmissions, or by using dynamic routing protocols that
aims at making the network operate energy efficiently as a whole.

2.2 Sensor nodes

Sensor nodes consist of 4 main parts, a controller unit, sensors, a power supply and
a transceiver (Fig. 2.1). Each of these components has their own responsibilities.

• Sensing unit – Sensors are responsible for gathering information (tempera-
ture, pressure, etc.). This information is supplied to the controller.

• Controller unit – Controller units processes the data and controls all the
components. This is often a microcontroller, but can also be a DSP, ASIC,
or FPGA. The controller gathers information from the sensor unit, stores it
in the external memory if necessary. Microcontrollers are often limited in
processing power. [3]

• Communication unit – The communication unit in a WSN is wireless.
Several wireless communication standards exists that are suitable for WSNs.
WSN communication is usually done by low-cost devices with a low-power
usage and a low data rate. IEEE802.15.4[4] is one of these standards.

4
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It specifies a raw data rate of 20-40kb/s in the 868/915MHz bands, and
250kb/s in the 2.4GHz band. Some other bands can also be used. The
transmission power in 802.15.4 should conform to local regulations. The
common node IRIS states a range of more than 300m outdoors, and more
than 40m indoors[5].

• Power supply unit – The power supply gives the sensor node power. The
power supply can be a main power source, a vehicle with the ability of
generating power, or batteries. Batteries are most often the power source
used by sensor nodes.

• External storage – The external memory can be used to save information that
is unable to fit in internal memory. The external memory can also often be
kept across reboots and periods of power loss.

A sensor node has, as mentioned, very little resources available due to its small
size and the low price. Drawbacks because of this are slow processing capabilities,
small memory size, and low amount of available power.

2.3 Base stations

In addition to the sensor nodes, a WSN often contains one or more base stations.
Sensor nodes can report the gathered information to the base station, which might
process it, store it, and make it accessible to the end user. A base station usually
has more resources than a sensor node, making it more similar to a computer.
The base station can also be responsible for sending commands to nodes, such as
configuration messages or queries. The base station can also be connected to, or
act as a gateway, and give the WSN connectivity to other networks (e.g., Internet).

2.4 Data reporting

There are several models that can be used to decide when a sensor node should
report the gathered information. Different models are suitable in different
applications. Some models are [6]:

• Time-driven/continuous – In this model the sensor measures and reports
information periodically. This is suitable for situations where periodic
measurements are of interest.

• Event-driven – Reporting is triggered by certain sensor events in this model.
Examples of events are sensor readings that exceed certain thresholds
(temperature, pressure), or physical events like a door that is opened or
movement in an area. This model fits well in time critical applications as the
sensor nodes report events immediately as they happen. Forest fire detection
would be an application where event-driven reporting is suitable. A sensor
node would react quickly if it observed something that can indicate a fire.

• Query driven – Sensor nodes report their readings when they are queried
in this model. Queries usually originate from the base station, but can also
originate from other nodes. Query driven reporting is suitable when sensor
information updates are needed sporadically.

A WSN can use a mix of these different models.

5



2.5. TOPOLOGIES AND COMMUNICATION

(a) Single-hop (b) Multi-hop
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Figure 2.2: Topologies

Information gathered by a sensor node can be communicated to the base station
in different ways. The simplest way is for sensor nodes to send the raw-information
directly to the base station. There exist techniques that reduce the information
transmitted. This can be:

• Compression – The sensor nodes can compress the data prior to sending it.
Compression is a process that removes redundancy in information, thereby
reducing its size without discarding any information. Compression requires
some computation, but reduces communication cost, as there is less data
to transmit. This increases energy efficiency, as radio transmission often is
more power consuming than computation. The effect of the compression is
dependent on the redundancy in the data. [6]

• Cluster aggregation – Cluster aggregation is a technique where a WSN can
be divided into zones called clusters. A sensor node is chosen to be a cluster
head in each cluster. Sensor nodes within a cluster report their data to
the cluster head. The cluster head can aggregate the information received
from the nodes. This can be done by suppressing duplicate data, computing
minimum/maximum/average values, percentiles etc. Instead of forwarding
the raw data from all nodes, the cluster heads send the aggregated data to
the base station. This data size reduction can decrease communication costs
[7, 6].

2.5 Topologies and communication

Depending on the positioning and maximum communication distance of the nodes,
two different communication scenarios are possible when a network has been
deployed. All the nodes can be within direct communication range in a single-
hop topology (Fig. 2.2a). If nodes are not within direct communication range,
intermediate nodes can be used to relay information in a multi-hop topology (Fig.
2.2b).

A multi-hop topology is a more complex situation than a single-hop topology.
The sensor nodes out of range with the base station have to use intermediate sensor
nodes that forward messages to the base station or other nodes. These Intermediate

6
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nodes that forward traffic are called routers. A routing protocol is necessary to
make this work. There are several routing protocols for WSNs, with different
attributes that are suitable for different applications. Examples of routing protocols
for WSNs are RPL, which will be described and used later in this thesis, Anchor
Location Service(ALS) and SecRout.

There are 3 types of normal traffic flows in sensor networks. These traffic flows
describe how nodes communicate with each other, they are:

• Multipoint-to-point (MP2P) – A lot of the traffic in WSNs is MP2P. Many
nodes gather information, which is sent to the same destination. This
destination is very often the base station.

• Point-to-multipoint (P2MP) – Some traffic in WSN can be P2MP. One
source is sending information to many destinations. This can be commands,
queries, or other messages from the base station to several sensor nodes.

• Point-to-point (P2P) – P2P is direct communication from one node to
another.

Data collection networks, which will be used in this thesis, mostly consist of
MP2P communication flows, where nodes send information to the base station.

7





Chapter 3

RPL Routing protocol

This chapter introduces and explains the basic working of IPv6 Routing Protocol
for Low-Power and Lossy Networks (RPL), a routing protocol created specifical
for WSNs. An overview over routing protocols is given in section 3.1. The ROLL
working group (WG) is introduced in section 3.2. This WG has created RPL,
which is introduced in section 3.3. RPL creates upward and downards routes.
The process of obtaining these routes are described in section 3.4 and section
3.5. The trickle timer, which is a central part of reducing energy consumption
and network overhead in RPL, is described in section 3.6. Techniques for avoiding
and detecting loops in RPL are described in section 3.7. Some repair functionality
is also introduced here. Some metrics that can be used with RPL are presented in
section 3.8. Finally, the two standardized OFs are described in section 3.9

3.1 Introduction

Routing is necessary for connectivity between devices in a multi-hop network.
Routing enables devices to connect to targets that are not accessible locally on
any of its interfaces. This is achieved by sending information through other
intermediate nodes, called routers. The information, on which routers can be used
to reach a given destination, is stored in a routing table. The entries in a routing
table can be either for a specific destination, or for groups of destinations divided
into subnetworks. These entries can be added to the routing table manually as static
routes, or dynamically discovered by a dynamic routing protocol.

Static routing requires someone to specify all the routes necessary for
communication. In order to specify these routes, knowledge of the network
topology is needed. Changes in the topology will not be present in the routing
tables before someone implements them. Depending on the situation one might
need physical access to the devices in need of routing updates. Gaining physical
access to devices in a WSN can be difficult, or even impossible to accomplish (e.g.,
if there are a lot of nodes, or the nodes are physically unavailable).

Dynamic routing protocols automatically discover the network topology,
create, and update the nodes routing table according to obtained topology.
Networks running routing protocols are self-organizing in the sense that they
automatically establish routing information without any manual intervention
necessary. The routing protocol keeps running after the network has been
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established. It keeps track of changes in the network, and updates the routing
information accordingly. In order to keep track of the topology the routing protocol
uses control messages that are transmitted on the network. These control messages
increase overhead, and in the case of a WSN, increases energy consumption.

Dynamic routing protocols are generally classified into:
• Interior vs. exterior – Interior routing protocols are usually working within

a network controlled by a single entity, whereas exterior routing protocols
work between networks controlled by different entities.

• Distance vector vs. link-state – Distance and link vector protocols differ in
the way that routing information is stored and exchanged between nodes.
In a distance vector routing protocol a node tells it neighbors about targets
it is able to reach and their associated cost. Devices choose the best route
by comparing the information obtained from their neighbors. The chosen
information is then used to populate the routing table.
In a link-state routing protocol, nodes share information about the targets it is
able to reach directly on its interface, with all the nodes in the network. This
means that each device has a complete oversight over the entire network.
Every link and every node in the network is considered during the calculation
of the routes, not only the neighbors.
A link-state routing protocol has more traffic overhead than a distance
vector routing protocol due to the fact that the whole network topology is
communicated to all the nodes in the network.

Routing protocols in WSNs and ad-hoc networks are also often classified into
proactive and reactive protocols which describe when, and which type of routing
information is exchanged

Proactive routing protocols obtain and exchange information about all routes as
long as the network is active. Routes to all subnets/nodes are calculated and stored
in the routing table. When a node wants to communicate with another node, it
already knows how to reach it. Proactive routing protocols work well in situations
where large amounts of nodes are communicating. The overhead from discovering
and maintaining routes to all the nodes in the network might be unnecessary in
networks with sparse traffic.

Reactive protocols, also called on-demand, try to obtain information about a
route only when it is needed. No other route information is exchanged between
nodes. The initiation of communication with a specific node triggers the dynamic
routing protocol to discover the needed route.

Reactive routing protocols introduce an initial delay before the packet can be
sent. This delay is a result of the time it takes to find a route to the destination. The
request might be flooded throughout the network until the destination is found. The
path taken by the request message can either be recorded in the request messages,
or remembered by the intermediate nodes. When the destination for the route-
request receives the request, it sends a reply to the initiator of the route request.
The initial delay between a route request and a reply increases with the topological
distance between the source and destination. In network situations with much
traffic between different nodes, the route discovery process can introduce a lot of
overhead, as many request and reply are transmitted for each route that is needed.

It is normal that there is more than one possible route to a given destination.
A metric is used by routing protocols to select the preferred route. Examples of
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metrics are number of hops, amount of bandwidth, and delay between nodes. The
route with the best metric is chosen by the routing protocol.

3.2 ROLL WG and LLNs

"Routing Over Low power and Lossy Network" (ROLL)[8], is a working group
(WG) within IETF. ROLL was created Feb. 11, 2011, with the task to create a
routing protocol for WSNs for "Low Power and Lossy Networks" (LLNs). LLN
is a type of wireless communication technologies with certain characteristics.
According to the ROLL charter[8], some of these characteristics are:

• "LLNs operate with a hard, very small bound on state"
• "Optimizes for saving energy in most cases"
• "Typical traffic patterns are not simply unicast flows.""
• "Employed on link-layers with restricted frame-sizes"
• "LLN Routing protocols have to be very careful when trading off efficiency

for generality.""
Most networks used in WSN are LLNs. The WSNs described in this thesis use
LLNs. The ROLL Working Group (WG) has evaluated already existing routing
protocols (e.g., OSPF, IS-IS, AODV, OLSR) for use in LLNs. None of these
routing protocols were found suitable for operation in LLNs. ROLL is only focused
on IPv6 routing framework in LLNs, and has created "IPv6 Routing Protocol for
Low-Power and Lossy Networks (RPL)[9].

3.3 RPL Introduction

IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL) is a distance-
vector [10], created by ROLL for use in LLN networks. RPL is a proactive routing
protocol, which seeks to minimize routing protocol overhead, at the cost of not
always having the latest and most up to date routes. RPL focuses on detecting and
creating routes for MP2P and P2MP traffic flows. P2P routes are also supported.

RPL went from being an Internet Draft to a Proposed Standard in March 2012,
and is defined in RFC 6550 [9]. The description of RPL is based on this RFC.

The main routing topology created by RPL is a destination oriented directed
acyclic graph (DODAG). A graph consists of vertices, which can be connected
by edges. A graph like this can be used to describe a network routing topology,
where vertices are nodes, and edges are routes. A directed graph means that the
routes are unidirectional1. The graph being acyclic means that there does not exist
any cycles/loops, in the routing between the nodes. The DAGs created in RPL is
destination oriented, and all the edges lead to the same destination. In the main
DODAG this is the root node.

The DODAG root is the destination in the DODAG. RPL defines two directions
of routes, up and down. Routes in the direction toward the DODAG root are
upwards, while routes going in the direction away from the DODAG root are
downward routes. The upward routes defines the DODAG. The situation in

1Even though a route is unidirectional, it is required that the connection between nodes is
bidirectional if they are to be used by RPL
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figure 2.2b on page 6 could be a DODAG, with the sink being the DODAG
root. Upward and downward routes are detected and calculated using different
techniques and messages in RPL. Downward routes are not necessarily created in
RPL, this is specified by the Mode of Operation(MOP). The DODAG has to be
created initially to create downward routes.

It leaves this task to an Objective Function(OF). The OF can use self-chosen
metrics in order to achieve its optimization goal. The OF is not specified in
RPL, and its behavior might be implementation specific. The OF decides which
metric the routes should be optimized for. This makes RPL suitable for WSNs
with different requirements. In addition to metrics, RPL can also use constraints
(e.g, do not use devices with low remaining energy). The OF is free to also use a
combination of several metrics and constraints.

Rank is the result of the OF. It is a number that indicates a nodes distance to
root, relative to the rest of the nodes. The root node has the lowest rank in the
network. The rank strictly increases as we move down (in the direction from a root
towards a node), and strictly decreases as me move up (in the direction from a node
towards root). This helps RPL avoid routing loops.

RPL operates through the use of control messages. RPL control messages are
ICMPv6 messages, of the type 155. RPL mainly uses 4 types of these messages:

• 0x00 – DODAG Information Solicitation (DIS)
• 0x01 – DODAG Information Object (DIO)
• 0x02 – Destination Advertisement Object (DAO)
• 0x03 – Destination Advertisement Object Acknowledgment (DAO-ACK)

DIS Messages are used to request routing updates, DIO messages are used
to establish upward routes, while DAO and DAO-ACK are used to establish
downward routes. Secure variants of these messages also exist. The security
measures include integrity, replay protection, confidentiality and delay protection.

4 identifiers are used by RPL to identify a routing topology:
• RPLInstanceID – Defines which RPLInstance this is. A network can contain

multiple RPLInstance. There can only be one OF in a given RPL instance.
A node can only belong to one DODAG in a RPL Instance, but can be part
of several RPL instances.

• DODAGID – There can be one or more DODAGs in an RPL instance, which
are identified by the DODAGID. The DODAGID of a DODAG is the IPv6
address of the root node. A node can only be a member of one DODAG at
any moment. The scope of the DODAG is a RPLInstanceID.

• DODAGVersionNumber – The DODAGVersionNumber identifies a given
topology in the RPLInstance defined by RPLInstanceID and DODAGID.
The DODAGVersionNumber defines an iteration of a DODAG with a given
DODAGID.

• Rank – Defines distance from root. The distance is relative to other nodes in
the network. The calculation of the rank is done by the OF. It can be a result
of link metrics, track topological distance and other properties.

These identifiers above are included in many of the RPL Control Messages.
The RPLInstanceID, DODAGID and DODAGVersionNumber must be kept
constant as the messages dissipate throughout the network, but the rank field is
updated at every node.
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Figure 3.2: DIO Message structure

3.4 Upward routes

Upward routes are used for messages traveling in the up direction, towards the root.
In scenarios that needs a MP2P traffic flow, from the nodes to the root, upward
routes have everything needed for proper operation. Upward routes are suitable for
networks that need MP2P, or P2P connectivity, from nodes to the root.

3.4.1 DIO messages

DIO messages are used to discover and maintain upward routes. The DIO messages
are sent periodically. The trickle timer calculates the interval between DIO
messages. The DIO messages contain information such as the RPLInstanceID,
DODAGID, DODAGVersionNumber and rank. The DIO message format is shown
in figure 3.2. All of these options, except for rank, are set by the root node, and
should not be changed by any other nodes.

The figure includes some fields that have not yet been described:
• Grounded (G): This field indicates whether the DODAG is grounded or

floating. If this flag is set, the DODAG is grounded. A grounded DODAG is
a DODAG that is able to fulfill an application specific goal. DODAGs that
are not grounded are floating.
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• Mode of Operation (MOP): Indicates the Mode of Operation for the
DODAG. This controls the behavior of downward routes. MOP will be
described in more detail later.

• Preference (Prf): This field defines the preference of the root. This is used
to choose between root nodes if more than one exists.

• Destination Advertisement Trigger Sequence Number (DTSN): A sequence
number used in the procedure of maintaining downward routes.

• Unused : The fields O, Flags, and Reserved are currently not in use.
A DIO Message can contain one or more options, the options supported are:
• 0x00 - Pad1
• 0x01 - PadN
• 0x02 - DAG Metric Container - The metric container is used to report metrics

for links. The metric can be either aggregate, or discrete link information.
This field can be included several times in a DIO message.

• 0x03 - Routing Information - Contains routing information about reachable
networks from the DODAG root. This field can be repeated for multiple
destinations.

• 0x04 - DODAG Configuration - Contains information about different
settings used in the RPLInstance. This includes trickle timer configuration
values. Variables used for rank computation.

• 0x08 - Prefix Information Contains information that is used for the IPv6
Neighbor Discovery. This can be used by a node to perform Stateless
Address Auto-Configuration (SLAAC) from a prefix advertised by a parent.

3.4.2 Route Discovery

A root initiates the process of discovering upward routes. The root starts sending
DIO messages to all its link-local neighbors using multicast. The neighbor nodes
receive these messages. If they are running RPL, and the messages are intact upon
reception, the DIO messages are processed. Neighbor discovery is accomplished
by reception of the DIO messages.

Upward routes are defined by a parent node. A parent is one of the immediate
successors of the node on a path towards the root. The preferred parent is used as
the next-hop router in the up direction. RPL use three logical sets to calculate the
preferred parent. The OF decides which nodes should exist in the three sets.

• Candidate Neighbor set – A subset of link-local multicast nodes. The
selection of this set depends on the OF and implementation. This is the
first selection of nodes that might work as parents.

• Parent set – A subset of the candidate neighbor set. Nodes that are in this
subset must have a lower rank than the node. All nodes in the parent set must
be part of the same DODAG Version.

• Preferred Parent set – One node is selected from the parent set, and used as
a parent. In the case of multiple parents with identical rank that are equally
preferred, there can be more than one node in this set.

A nodes rank is INFINITE_RANK by default. INFINITE_RANK is the maximum
rank a node is allowed to have, it indicates that the node does not have any parent.

The reception of DIO messages populate the Candidate Neighbor set. The
Candidate Neighbor Set does not necessarily contain all nodes which DIO
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messages are received from. The OF uses the Candidate Neighbor set to find parent
nodes, which are inserted into the parent set. These parent nodes must have a lower
rank than the current rank of the node. Nodes that would cause the parents rank to
increase, are not considered in the parent selection process. The node that will give
the current node the lowest rank is selected to be the preferred parent. In addition
to metric, RPL can also use constraints to restrict certain nodes to be chosen as
parents. The constraint can either be applied to link or nodes. The paths containing
a constrained link or node will be removed from the candidate neighbor set, and
thus never selected to be a parent. Examples of constraints can be to not use nodes
with low remaining power as routers, or to limit the maximum amount of hops.
Battery operated nodes will not be chosen as parents. Messages will not be routed
through any battery-operated nodes.

When a node has selected a preferred parent and calculated its own rank, it
starts multicasting DIO messages to its link-local neighbors. As stated, the fields
in these DIO messages must identical with the received fields from parent nodes,
with the exception of the rank field, which must be updated at every node. New
nodes now receive DIO messages and the process of selecting a parent node repeats
in all of them. Eventually, upward routes will have been established throughout the
network.

A node can use a DODAG Information Solicitation (DIS) to request DIO
messages from other nodes. The DIS messages can specify criteria that should
be fulfilled for a node to reply with a DIO.

3.5 Downward routes

Downward routes are used for messages in the direction away from the root. The
downward routes are necessary in applications using P2MP, or P2P traffic flows
where messages are destined to other nodes than root. RPL specifies 4 different
Mode of Operations (MOP) that decide how downward routes are handled in
the network. The root decides the MOP. There can only be one MOP in a RPL
instance2. If a node doesn’t meet the requirement for acting as a router with the
active MOP, it must join the network only as a leaf node. A leaf node uses RPL to
calculate parent routes, but cannot take part in routing and act as a parent for any
other nodes. RPL specifies 4 different MOPs:

• 0 – No downward routes maintained by RPL
• 1 – Non-Storing Mode of Operation
• 2 – Storing Mode with no multicast support
• 3 – Storing Mode with multicast support.
Downward routes are established and maintained using Destination Advertise-

ment Object (DAO) messages. This has to be done after the DODAG have been
created. A node is responsible for transmitting DAO messages for all targets it is
associated with. Targets are nodes/networks reachable through that node. DAO
messages behave differently depending on which MOP is active. The main differ-
ence between DAO in the non-storing and storing MOP, is the location of routing
information. DAO messages flow in upward in the network, the opposite direc-

2The RPL RFC opens for the possibility of mixing MOPs in an RPL instance in future
extensions[9].
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tion of DIO messages. The DAO messages contain information about targets on
the node, and how they can be reached (transit information). This information is
included in the DAO as a target option, possibly followed by a transit information
option. The DAO messages might be sent upon reception of other DAO messages,
changes in a neighbor set, or the expiration of related prefix lifetime. If the re-
ceived DAO message is not "new", the node is not required to transmit a DAO. The
definition of a new DAO differs in the different MOPs. The DAO messages also
contain a Path Sequence counter to indicate freshness. If a DAO with new/different
information is to be sent, the node must update its DAOSequence.

Point-to-point communication is accomplished by sending the message upward
to a router with the necessary routing information, this router then sends the
message downwards to the destination node.

3.5.1 Modes of Operation

No Downward routes maintained by RPL (0): In this case, no downward
routes exist in the network at all. Nodes should not transmit any DAO messages,
and are free to ignore received DAO messages.

Non-Storing Mode of Operation(1): In non-storing MOP, downward routing
information resides only in the root node. DAO messages are sent directly to
the route as unicast messages. The root keeps track of the DAO messages it has
received, and calculates the routes provided by the DAO. If the target address is
derived from a prefix owned and advertised by a parent, this can be used as the
transit information sent in the DAO. If this is not the case, the transit information
is the parent address of a reachable target. All DAO messages in non-storing mode
are considered "new".

The routing information in the root consists of nodes and their parent’s address,
or the prefix if the target address is derived from a parent prefix. The root
recursively uses this information to find the route needed to reach the node.
Routing operations in intermediate nodes are performed using source routing. The
message header contains the route for the messages destination. Each router checks
the header, and sends the message to the node appearing after itself in the message.

For two nodes to communicate together in this mode, the transmitting node has
to send the message to the root, which uses source routing to send the message on
to the receiving node. Source routing is a technique where the complete path from
a source to a destination is stored in the message header. Nodes forward messages
using this information rather than a routing table in memory. The next-hop address
is found by looking up the nodes id in the path, and then read the next address in
the list.

Non-storing MOP is suitable in applications where the nodes have limited
memory. The nodes do not have to store any routing information. The source
routing information in the header might lead to more overhead than in a storing
MOP. Because of the maximum header message size, there is a maximum amount
of hops the message can traverse. If two nodes are topologically close, messages
between these might travel unnecessarily long distances since it has to go via a
root.
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Storing Mode of Operation, multicast and no multicast(2,3): In storing mode,
each router node stores downward routing information for nodes that are beneath
it (down direction). DAO messages are either sent to parent nodes as unicast (no
multicast), to all link-local RPL neighbor as unicast (multicast). The information
in a DAO message contains all targets reachable downwards through this router,
including targets more than one hop away.

When sending a message in this MOP, the routing table is first checked for a
match against the destination node. If no match is found, the message is forwarded
to the parent node. This continues until a match is found, or the message has
reached the root node. If an intermediate node finds a match in the routing table,
the message is forwarded to this next hop. This way messages first travel to the
closest common parent along the line up toward the root. This parent should have
a routing entry for the destination, and forward the message in the down direction
towards the destination away from root.

Storing MOPs require that nodes have sufficient memory to store routing
information. If this is not the case, routing information may be lost. This can
lead to dropped messages.

Storing mode requires more memory than non-storing mode. Nodes in
WSN often have very limited memory, which might make storing mode hard to
accomplish. At the cost of memory, storing mode can reduce energy consumption
compared to non-storing mode. Messages only have to find the common parent
before the message can be redirected down. This decreases the number of
retransmissions needed by at least the amount of hops between the common node
and root. The reduction in transmissions also decreases end-to-end delay.

A DAO is considered "new" if:
1. it has a newer Path Sequence number
2. it has additional Path Control bits
3. it is a No-Path DAO message that removes the last Downward route to a

prefix. A no-path DAO message is a message clearing the downward routing
information created from DAO messages.

3.6 Trickle Timer

The trickle timer is designed to reduce network overhead caused by RPL control
traffic. If routing information between nodes differs, the network is in an
inconsistent state. This can be fixed by transmitting DIO messages, which updates
other nodes routing information. Rapid transmission of DIO messages makes this
process faster. If the network is consistent, that is, the routing information between
nodes do not differ, rapid transmission of DIO messages creates unnecessary
control traffic.

The trickle timer dynamically adjusts the interval between DIO messages. If
the network is in an inconsistent state, the interval between DIO messages is
small. As long as no inconsistencies are discovered, the trickle timer increases
the interval between DIO messages exponentially. The trickle timer is specified in
RFC6206[11].

The trickle timer is configured with 3 parameters. A minimum and maximum
interval size, and a redundancy constant. The redundancy constant controls how
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many DIO messages to send, depending on received consistent DIO messages. The
higher the value, the less DIO messages are sent. The minimum and maximum
interval size controls the smallest and largest interval allowed to use between DIO
messages.

The RPL RFC provides some default values for the trickle timer. DEFAULT_-
DIO_INTERVAL_MIN=3 is used to calculate the minimum interval. The default
value of 2 specifies the interval to be 8ms(2DIOIntervalMin). The default maximum
interval is calculated from DEFAULT_DIO_INTERVAL_DOUBLINGS=20, this
makes the maximum interval 2.3 hours (2DIOIntervalMin ∗ 2intervaldoublingms).

DIO messages that do not cause any change to the parent set, preferred parent
set, or rank, are considered consistent. Events mentioned in the RPL rfc[9] causing
the trickle timer to reset are:

• When a node detects an inconsistency when forwarding a packet.
• When a node joins a new DODAG Version (e.g., by updating its

DODAGVersionNymber, joining a new RPL Instance)
• When a node receives certain types of DIS multicast messages (specified in

the rfc).

3.7 Loop avoidance and detection

In a LLN, connectivity often undergoes changes. Keeping the routing information
updated at all times can require a lot of energy. Traffic is often infrequent, and
updated routing information is not always necessary. For these reasons RPL does
not keep the routing information updated at all times. Changes in the network
that are not updated in the routing tables might therefore lead to loops. RPL does
not guarantee that routing loops never occur, but tries to avoid them. To avoid
routing loops, RPL expects an external mechanism to include some RPL control
information that enables it to detect loops.

3.7.1 Rank

The concept of rank is used to avoid routing loops during the creation of the
DODAG. The rank strictly decreases in the up direction. There are several rules
that the rank must follow, some of the main ones are:

1. A node must not advertise a rank higher or equal to any of the nodes in its
parent set

2. A node can advertise a lower rank than it has previously advertised.
3. A node is not allowed to move down and advertise a rank higher than

a given amount compared to what it has already advertised in the same
DODAG version. The highest allowed rank is given by lowest_advertised+
DagMaxRankIncrease. An exception to this is the INFINITE_RANK.

The first rule ensures that the parents of a node always are closer to root. The
second rule makes it possible for a node to improve its place in the DODAG. The
third rule prevents greediness. Nodes are greedy by increasing their rank in order
to get a bigger parent set. An instability might occur if nodes are allowed to be
too greedy. Because of this nodes are only allowed to increase their rank a certain
amount. A route can poison its neighbor by advertising INFINITE_RANK. It is
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then considered to have left the DODAG, and is removed from the parent of the
nodes in its sub-DODAG. A node is allowed to move down, thus decreasing its
own rank. There is no danger for routing loops in this scenario.

3.7.2 Loop detection

The rank is also used to detect loops during normal operation. This is done using
the RPL Packet Information mechanism. The RPL Packet information contains
some information that is to be included with normal data-messages forwarded by
routers in the RPL network. The RPL packet information contains:

• Down’O’ 1-bit: This flag indicates the expected direction of the packet,
either up or down. It is set when the packet is expected to travel in the
down direction.

• Rank-Error ’R’ 1-bit: This bit is set if a node detects an inconsistency
between the expected direction indicated in the packet and the relationship
between sender and receiver Rank.

• Forwarding-Error 1-bit: If set, indicates that the router is unable to forward
the packet further towards the destination.

• RPLInstanceID 8-bit: The RPLInstanceID that the sending node is a part of.
• SenderRank: This contains the sender’s rank. It is updated at every router it

traverses.
RPL Packet Information is to be included with all data messages, and contains

control information. The control information includes the sender’s rank and a
flag (called down), which indicates the direction the packet is expected to be
routed. The direction indicated by the relationship between sender rank and
current rank, is compared with the expected direction indicated in the down flag.
A mismatch occurs if the down bit indicates one direction, and the relationship
between the sender’s rank and current node’s rank indicates the opposite direction.
If a mismatch occurs and the Rank-Error field is clear, the router sets the rank-
error field and forwards the packet. If a mismatch occurs and the Rank-Error field
already is set, the router drops the packet. The node should also start a local repair
operation (described in section 3.7.5).

3.7.3 DAO loops

DAO loops may occur if DAO messages are lost. Due to the likelihood of this
happening, DAO acknowledgment (DAO-ACK) messages exist to make sure DAO
messages reach their destination.

3.7.4 Global repair

Global repair is a mechanism that can be used to refresh the DODAG. It lets all
nodes select new parents and advise a new rank, independently from what have
been before. Only the root node can initiate a global repair. It does this by
incrementing the version number. As nodes receive DIO messages with the new
version number, they are free to join the new version when they want. However,
all their parent nodes must also be part of the new version. When a node has joined
the new DODAG version, it sets the new version number in its DIO messages, and
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the DODAG is updated node by node. A node that joins a new version has no
restrictions to its rank or its parent set, except that all nodes in the parent set must
be part of the same version.

A global repair can be triggered by the root periodically, on detected events, or
manually.

3.7.5 Local repair

RPL allows local repair mechanisms. One of the suggested methods allows a node
to poison its sub-DODAG by advertising INFINITE_RANK. Nodes that advertise
INFINITE_RANK cannot be used as parents. The nodes in the sub-DODAG
therefore have to remove the node from their parent sets. The node is now detached
from the DODAG, and can choose parents that previously were higher ranked.

3.8 Metrics

Many different metrics can be used for path calculation with RPL. These different
metrics are specified in RFC6551[12]. Metric types in RPL can be used as either
constraints or metrics, and many of them can be used as both. A constraint limits
the selection of parents (e.g., don’t choose a parent which routes involves a parent
with low remaining power), while a metric is used to optimize a selection.

The metrics included in DIO messages can be aggregated or recorded. An
aggregated metric is defined by one value, which is adjusted as the DIO messages
travel through the network (e.g., hop count, which increases by 1 for every hop).
Recorded metrics are specified by several distinct values, which are recorded as
DIOs travel through the network. The possibility for several metric fields in DIO
messages allows the OF to use several metrics. In this scenario a precedence field
is given with the metrics, this field decides which metric should have precedence
over the others.

RFC6551 includes some often-used metric that can be used:
• Hop Count - Reports the number of traversed nodes along the path.
• Link throughput
• Latency
• Link reliability
• Link Quality Level (LQL)
• Estimated Transmission Count(ETX)

3.8.1 Hop count

Hop count is a very common metric that is widely used in computer networks. The
hop count measures the amount of nodes a message has to traverse in order to get
to the destination. When used in RPL, hop count can be aggregated or constrained.
Hop count can be used either as a metric, or a constraint.

3.8.2 Link Reliability

Two metrics that indicate Link Reliability is specified for use with RPL. These are
Link Quality Level(LQL) and Estimated Transmission Count (ETX).
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LQL is a number ranging from 0 to 7 describing link reliability. A value of
0 indicates unknown link quality, a value of 1 indicates the highest link quality,
and a value of 7 indicates the least link quality. This path metric can be used as
either a constrain or a metric. The conversion to the LQL is not specified, and is
implementation specific.

ETX is the other link reliability metric that can be used with RPL, it can
be a path metric or a constraint. ETX[13] was designed to overcome some
of the problems that occurred with hop count in lossy networks. The ETX
metric indicates the total amount of expected transmissions needed for a packet
to be successfully received and acknowledged. It therefore also accounts for link
asymmetry as both directions are considered. ETX can be calculated using forward
and reverse delivery. There is no requirement for this formula, but the following
formula is often used:

ETX =
1

d f ∗ dr

where d f is the forward delivery ratio, and dr is the reverse delivery ratio. The first
ETX proposal[13] used network probes to gather this information. These probes
are not very suitable for WSN networks, as they introduce unnecessary network
overhead. Another way often used to measure the ETX is to give all nodes an initial
ETX, which is often a bit high. A random node is initially chosen as the preferred
parent. As this route is used, the ETX is updated. Two RPL implementations,
TinyRPL and ContikiRPL, update the ETX with a exponentially weighted moving
average (EWMA). This technique finds errors and corrects for them. A weakness
using this method is that nodes that can provide a better route is not necessarily
tested. A similar method called passive probing [14] has been proposed to improve
this. Passive probing technique uses a low initial ETX value, and switches the
preferred parent often. The fast switching would allow many preferred neighbors
to be tested, increasing the chance of finding the best parent.

The ETX metric has some important characteristics. Throughput is positively
affected by the fact that ETX is based on delivery ratios. ETX avoids routes with
many hops, as each hop increases the ETX with at least 1. This might have the
effect of reducing energy consumption, as each packet transmitted uses power both
for the receiver and transmitter.

ETX offers improvements over hop count in several areas. It minimizes the
amount of hops, while also accounting for loss ratios and asymmetric links. This
can also reduce energy consumption pr packet. Link asymmetry is also accounted
for as delivery ratios in both directions are considered.

3.9 Objective Functions

The Objective Function (OF) is responsible for selection and optimization of
routes. The OF is an interchangeable part of RPL, and RPL does not specify
an OF. Users can create their own OF if they want to. This separation makes
it easy to tailor RPL for different use cases, as different OFs can have different
optimization goals. An OF can specify the metrics and constraint it uses. The
OF is not an algorithm, but an abstraction as to what it should do. One OF can
optimize routes based on latency, while another OF can optimize routes based on
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energy consumption, and constrain the routes to use nodes that are not low on
power.

The OF uses information collected from the DIO Dag Metric container option,
as well as the rank.

Objective Function 0 (OF0) [15] is the default OF in RPL. It is assumed that
OF0 is always implemented. OF0 is a standard specified in RFC6552.

3.9.1 Objective Function 0

Objective Function 0 (OF0) is the default OF in RPL. Its goal is to provide good
enough connectivity to a grounded DODAG, but does not guarantee optimization
against a specific metric. OF0 uses the rank information from DIOs, but not the
metric container. OF0 selects a preferred parent, and a feasible backup successor if
possible. The feasible backup successor is only used if connection to the preferred
parent is lost.

OF0 uses rank_increase to calculate rank. rank_increase is a
normalized value. step_of_rank is a property associated with a link to a node.
step_of_rank is a number between 1 and 9. It is recommended that step_-
of_rank is based on link-quality. If step_of_rank is constant, the rank will
be similar to hop count. This will result in longer hops, with added risk that the
link is bad.

Although not recommended, OF0 allows step_of_rank to be stretched by
stretch_of_rank. This is done using a rank_factor, to which step_-
of_rank is multiplied. rank_factor can be used to give certain link types
priorities over other. The resulting rank_increase for a node is given in the
equations:

rank_increase = (rank_ f actor ∗ step_o f _rank + stretch)
∗ MinHopRankIncrease

resulting_rank = rank_parent_node + rank_increase

MinHopRankIncrease is a number defined in RPL. It decides the
minimum rank that must be added to a rank, and also the radix point in the rank
value. [15]

Parent selection

OF0 compares nodes based on the following criteria:
1. The reachability of a node mus be validated before it is selected as a preferred

parent.
2. Consider policies for multiple interfaces and administrative preferences.
3. Connectivity to a grounded root should be preferred.
4. Connectivity to a more preferable root should be preferred.
5. For nodes in the same version, the most recent version should be preferred.
6. The node that causes the lower rank should be preferred.
7. (Optional) A node where a feasible successor exists should be preferred.
8. The previously selected parent should be preferred.

22



CHAPTER 3. RPL ROUTING PROTOCOL

9. The node that has announced a DIO message more recently should be
preferred.

3.9.2 Minimum Rank with Hysteresis Objective Function

The Minimum Rank with Hysteresis Objective Function (MRHOF)[16] is the
second current standardized OF for RPL. It is defined in RFC6719. MRHOF
chooses parent nodes trying to minimize a given metric. The metrics to be
used with MRHOF must be additive (e.g., hop-count, ETX). MRHOF also uses
hysteresis to minimize changes due to small metric changes. MRHOF can work
with several different metrics, and uses the metric received in the DIO Metric
Container. ETX is used as a default if no DIO Metric Container is present. ETX is
then sent in the rank field of DIO messages.

In the parent selection process MRHOF searches for the parent that provides
the lowest end-to-end cost, if this new parent offers a route that is better than the
currently selected route by a given threshold, it will be selected. If this threshold
is not exceeded, MRHOF stays with the old parent. The threshold is the hysteresis
part of MRHOF.

MRHOF also specifies certain rules for calculating rank when the parent set
size is larger than one.

Parent selection

Path cost is calculated for each candidate neighbor reachable on an interface. A
path cost is received from each neighbor. This is the path cost from that node, to
the root node. The calculation of a path cost to a neighbor is a sum of the path cost
advertised by that neighbor, and the cost from the calculating node to the neighbor
node as shown:

path cost = advertised neighbor path cost + cost to neighbor

The neighbors’ path cost should be updated when:
1. The selected metric of the link to the candidate neighbor is updated.
2. The selected metric is a node metric and the node is updated.
3. A node receives a new metric advertisement from the candidate neighbor.
When all the path costs have been calculated, MRHOF chooses the preferred

parent based on the path cost. Nodes whose path cost is larger than MAX_PATH_-
COST should not be . The variable cur_min_path_cost, is the path cost of the
currently preferred neighbor. It is used with PARENT_SWITCH_THRESHOLD for
to allow hysteresis. MRHOF allows a node to select PARENT_SET_SIZE -1
candidate neighbor in its parent set. MAX_LINK_METRIC is used to filter out bad
links. If the path cost to a neighbor node > MAX_LINK_METRIC, this node should
not be considered.

The advertised rank when using MRHOF depends on the metric used. If hop-
count or ETX is used, the rank is equal to the cost. If latency is used, the rank is
latency/cost. If PARENT_SET_SIZE>1, the maximum rank calculated from the
3 following rules is used

1. The rank calculated for the route through the preferred parent.

23



3.9. OBJECTIVE FUNCTIONS

2. The rank of the member of the parent set with the highest advertised rank,
rounded to the next higher integral rank.

3. The largest calculated rank amongst paths through the parent set, minus
MaxRankIncrease.

MRHOF also proposes some recommended values based on experience from
real life deplyments[16, 17].
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Chapter 4

The IRIS node

This chapter introduces the IRIS sensor node, and some accessories that, be used
for the work of this thesis. An overview of the node is given in this chapter. The
board for connecting the nodes to a computer is thereby given, and the sensor board
that will be used later. In the last section the radio and its link quality indicators
are described.

4.1 IRIS

The sensor node that is used in this thesis is the Memsic IRIS node[5]. This is a
node that is supported by the standard TinyOS version. A picture of the IRIS node
with a MTS420 sensor board attached is shown in figure 4.1. The IRIS has 3 user
programmable LEDs, and a 51 pin expansion connector. This connector can be
used for analog inputs, digital i/o, I2C, SPI and UART interfaces. The node has
a size of 58x32x7mm excluding the batteries, and weighs 18g, and is powered by
two AA batteries at 1.5V each.

The processor on the IRIS node is XM2110CB, which is based on the
ATMega1281. The node is equipped with 8KB of RAM, 128KB of programmable
flash memory, and 512KB of measurement flash. The processor uses 8mA in
normal operation, and 8µA in full sleep.

Figure 4.1: The IRIS node, equipped with a MTS420 sensor board
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4.2 UART board

The MIB520[18] enables all IRIS nodes to be used as gateways. The MIB520
connects to the expansion connector of the IRIS. Attached to the MIB520
board are LEDs connected showing the same as the LEDs on the node. The
connector also provides the node with power, and enables programming and UART
communication with the node through a USB port, with a baud rate of 57.6K. The
MIB520 will be used for the base station, and also to program all nodes.

4.3 Sensor board

The sensor board MTS420[19] is a sensor board designed for the IRIS, and other
similar nodes. The sensor board connects directly to the expansion connector on
the IRIS. It is a collection of multiple sensors, which amongst others can measure
temperature, humidity, dual-axis acceleration, barometric pressure, and ambient
light. It is also possible to equip this sensorboard with a gps module.

The Sensirion Sht11[20] is the sensor used to measure temperature and
humidity on the MTS420. This sensor offers a minimum resolution of 0.4%RH
and 0.04◦C. The sensor operates with voltages between 2.4 and 5.5V. The SHT11
consumes 0.3µA when sleeping, and 0.55mA when measuring.

The operating range of the sensor is -40–123.8◦C, and 0–100%RH, with a
typical humidity accuracy of ±2.0(%RH), and a typical temperature accuracy of
±0.4◦C. The accuracy of the sensors can be affected when operating under extreme
conditions, e.g., larger than 80%RH.

4.4 Radio

The IRIS node is equipped with an IEEE802.15.4[4] compliant radio, Atmel
RF230[1]. RF230 operates between 2.4 and 2.48GHz with a data transmission rate
of 250kbps. Maximum transmission power is 3dBm, with a stated transmission
range of more than 50m indoor, and 300m outdoor. Transmission at this power
output consumes 17mA. Power consumption can be reduced by reducing power
output, this results in a power consumption of 13mA@-3dBm, and 10mA@-
17dBm. The radio has a receiver sensitivity of -101dBm. The minimum received
power indication is however only -91dBm.

4.4.1 Link quality

The RF230 radio offers access to 3 properties that can be used to indicate the
quality of a received message. These 3 properties are Receiver Energy Detection
(ED), Received Signal Strength Indicator (RSSI) and Link Quality Indication
(LQI), and are all specified IEEE802.15.4[4]. These properties can be read when
receiving packets.

RSSI and ED

RSSI and ED are both used to measure channel energy for received packets. RSSI
and ED cannot be used simultaneously. RSSI indicates the channel energy at a
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Figure 4.2: Conditional Packet Error Rate versus LQI. (From [1])

This figure shows the association between LQI and PER for the RF230 radio. These are
statistical values based on a large number of receptions for frames with a length of 20

octets.

given instant in time. RSSI has a minimum sensitivity of -91dBm, and a dynamic
range of 81dB with a resolution of 3dB. ED is an average of RSSI over 8 symbols
(128µs. This gives it a higher resolution than RSSI. ED thus has a resolution of
1dB, and a minimum sensitivity of -91dBm.

LQI

LQI is a value ranging from 0 to 255, and is given as a combination of signal
strength and/or qualify of a received packet. IEEE802.15.4 leaves the calculation
of LQI to the implementation, given the conditions that 0 indicates lowest link
quality, and 255 indicate the best link quality. The values should be distributed
evenly between them. RF230 uses correlation results of multiple symbols within
a frame to determine the LQI. The LQI calculated from RF230 can be associated
with Packet Error Rate (PER). This association can be seen in figure 4.2. Low
values are associated with low signal strength and/or signal distortions. These
distortions can either be caused by interference and multipath propagation. The
LQI grows independent of RSSI/ED the larger the RSSI/ED is, since this does not
improve Packet Reception Rate (PRR).
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Chapter 5

Choosing metric and OF

A big part of a RPL implementation is the Objective Function. RPL[9]
specifies that Objective Function 0 (OF0) must be implemented. OF0 is to be
used as the least common denominator for RPL implementations. The RPL
implementation used in this thesis does not need to be interoperable with any
other implementations. The implementation of OF0 was not deemed necessary.
In addition to choosing an OF, metrics to be used also have to be chosen

This chapter starts by explaining the needs for the application. Thereafter some
experiences about metrics from test deployments and experiments are discussed in
section 5.1. This leads to an optimization goal and use of metric that is described
in section 5.2. Finally, an OF is chosen in section 5.3

5.1 Experiences with metrics

Different use cases have different needs for the metric that should be used in the
routing protocol. Since RPL is not metric specific, one can choose between many
different metrics. RFC6551[12] specifies metrics that can be used with RPL.

The application that this metric was provided to support was a data-collection
tree, where all nodes gather information, which is transmitted to the root
node. A network with a long lifetime and stable communication was wanted.
Routing optimization based on nodes remaining energy was out of the scope for
this implementation, but the routing protocol should provide reasonable energy
efficiency pr packet. Some wanted characteristics were created for the metric:

• The selected routes should be energy efficient in that they do not have an
unnecessary amount of retransmissions. Routes with an unnecessary high
amount of hops should also not be selected. Routing protocol overhead
should also be minimized in order to save energy.

• Combined with the previous point, the chosen routes should be reliable to a
given point. The amount of maximum retransmissions should thus be kept
within a certain amount.

• End-to-end latency was not very critical for this network. The network would
gather information with intervals larger than 5 minutes. These numbers are
much larger than the end-to-end time in most networks.

Some of the metrics introduced in section 3.8 were considered for accomplish-
ing these tasks.
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5.1.1 Hop count

Hop Count is a metric that is very much used in computer networks, where it
works well. The amount of hop is minimized, without taking regard to bandwidth
or loss. The difference between computer networks and LLN networks is however
big. LLN networks often vary much, and can be very lossy. Hop count does not
work too well in LLNs, as link quality is accounted for. Hop count therefore often
chooses a preferred parent that is far away, which increases the chance that a link
is lossy[15, 13].

Testing hop count

A test was done using a basic hop count implementation in Bergen University
College. This implementation minimized hop count, and used node id as a
tiebreaker. Given nodes with equal hop count, the node with the lowest node id
was preferred. The results from this test showed poor results for the hop count
metric.

A network of about 10 nodes with the hop count optimization was deployed.
These all sent information to the root with 1-minute intervals. Most of these
nodes were located above lowered ceilings, with groups of nodes being located
in different rooms. . Either plaster or concrete walls separated the rooms. Not
given much consideration, nodes were placed with increasing id numbers further
and further away from the base station. The node id thus increased as distance
from root increased. The nodes closest to the root node showed a bit higher packet
loss than expected in this experiment. This is most probably due to much WiFi
traffic, which is around the same frequency area as the IRIS node. The locations of
the nodes might have also affected this. Most of the nodes chose the base station
as a preferred parent. This is as expected since it offers the lowest hop count, and
also has the lowest node id. This worked well for nodes that were close to the base
station. High packet loss did occur for nodes that located further away. It was also
observed that almost all nodes selected the root node as a preferred parent, even if
packet loss was very high. This resulted in a couple of received packets from some
nodes.

The experiences from this test led to the following conclusions:

• Since hop count minimizes the number of hops, it often chooses parents that
are far away compared to the nodes within communication distance. As link
strength, and also quality, is largely a product of distance, this increases the
chance of selecting a parent with one of the worst routes..

• The previous point was made even worse by the fact that the node id
increased with distance, and the implementation chose the parent with the
lowest node id.

• Even if a link is very lossy, some routing messages might make it through
from time to time. The routing protocol does not know that these links might
be very lossy, and might see a good candidate.

These results fit well with results from other literature [13].

30



CHAPTER 5. CHOOSING METRIC AND OF
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Figure 5.1: Test node locations

5.1.2 RF230 Link Quality

An experiment was done in order to get some experience with the link quality
information provided by the RF230,packet loss, transmission distance and link
asymmetry. This information would prove valuable information in selecting a
metric, and when deploying a network. Some of these properties are location
dependent, and will therefore not be the same in different locations, they do
however give a certain indication to the relationships. Examples of these properties
can be noise, which can greatly affect link quality and asymmetry.

The test consisted of 10 nodes in addition to a base station. The nodes were
placed throughout a hallway, following a straight line. An overview of this can be
seen in figure 5.1. The test was done in a weekend, the environment was therefore
mostly static as there was not much human activity in the hallway.

The rest of the 10 nodes were spread evenly throughout the hallway, with an
increasing distance from the base station. Node 10 was furthest away from the base
station, and was placed where packet reception seemed to stop. The hallway was
about 2m wide. In order to keep the nodes out of harms way, they were placed on
lockers by the wall. Some structural hindrances were located between the nodes
and the base station, and some nodes were located in spots where radio shadows
where likely to occur.

During the test period, the base station would in turn send a ping message to
each node containing a sequence number. A reply would be sent to the base station
if a node received a ping message like this. The reply contained the sequence
number, and also ED and LQI from the ping message from the base station. Upon
receiving this reply the base station would log the nodeid, sequence number, and
ED and LQI in both directions. Table 5.1 shows an overview of the results from
this experiment.

Transmission distance and PRR

From the results in table 5.1 we can see that PRR somehow decreases as distance
increases. Node 7, 8, and 9 shows that these factors are not necessarily directly
connected. Node 9 has a higher PRR than both 7 and 8, even though it is further
away. We can also see that node 8 has a very low PRR. This is most likely due
to multipath fading, or other external factors. The nodes seems to be divided in
3 different regions: a connected, a transitional, and a disconnected [21] region.
The connected region consists of links that are stable and of good quality. Link
quality in the transitional region is often varying, and is not a product of distance.
There is also often high asymmetry in the transitional region. The disconnected
region consists of links that have very poor quality, and is mostly unusable. In the
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node id distance(m) PRR(%) avg. ED (σ) avg.LQI (σ)
1 5.5 99.87 -72.0 (0.50) 255 (0.94)
2 10 86.18 -74.4 (0.29) 255 (4.54)
3 12 87.82 -82.0 (0.14) 255 (7.55)
4 16 83.25 -82.5 (1.30) 255 (2.13)
5 19 83.68 -90.0 (0.25) 252 (14.0)
6 23 87.94 -76.0 (0.12) 255 (3.5)
7 25 78.49 -90.6 (0.48) 236 (23.0)
8 29 29.41 -91.0 (0.06) 142 (26.4)
9 32 84.06 -90.5 (0.5) 237 (27.0)

10 32.2 6.9 ∗ 10−3 x x

Table 5.1: Results from the hallway test

This table shows an overview over the different nodes and results from the test in the
hallway. It includes the distance from root, PRR, average RSSI with standard deviation,
and also average LQI with standard deviation. Some data is excluded from node 10 as

there is not enough to make any statistics (A total of 4 messages were replied).

connected region the communication is stable, node 1-6 in our test would be in
the stable region. The transitional region contains node where communication can
differ, studying the packet reception to node 8 and 9 shows this. Node 8 has very
poor connectivity, but node 9 has good connectivity. Barely any communication
has been accomplished with node 10, this node is in the disconnected region.

LQI/ED and PRR

LQI and ED/RSSI are the two link quality properties accessible in the RF230 radio.
Unfortunately it was not easy to get the value of the noise floor in TinyOS, and it is
therefore not studied. It is of great interest to figure out how LQI and ED/RSSI is
related to PRR. According to the RF230 data sheet [1] there is a large correlation
between LQI and PRR, but not so much for ED/RSSI.

Figure 5.2 shows PRR vs average LQI and PRR vs average ED from the
experiment. T. This graph does not show much correlation between ED and PRR.
Low PRRs would be expected close to the radio minimum sensitivity [22]. I would
however think that this would be highly affected by the signal to noise ratio. The
minimum ED detection sensitivity is however 10dB over the minimum receiver
sensitivity of the radio, a measurement of -91dBm can be anywhere between -
101dBm and -91dBm. Packet loss close to this region can therefore not be seen.

Figure 5.2 does show a large correlation between LQI and PRR. This is similar
to the information provided by the RF230 data sheet [1], but the results shows a
higher needed LQI for a given PRR. This is expected as the PRR in this test is
a product of both directions, the frame size is also larger in this experiment than
the data sheet. The graph is kinda inconclusive, as there is not much data for LQI
between 170 and 220. Note that LQI is fluctuating fast, and therefore needs to be
averaged [22], this can be seen in figure 5.3 where differences in LQI of 100 is
experienced during a period of 30 seconds.
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Asymmetry in radio links for LQI and ED can be seen in figure 5.4. There
seems to be a very strong symmetric relationship between sent and received ED.
The LQI shows more signs of asymmetry. Note that the color intensity of this
graph is logarithmic, and areas with a low amount of observations might seem like
has a larger amount of observations.

The standard deviation shows that there are low variations in ED for the nodes,
but a bit higher variations for LQI.

5.2 Choosing optimization goal and metric

The discussed metrics, and the results from the test and experiment were taken
into account when selecting a metric to use. The hop count test showed poor
results, according to the expectations. Using hop count as a metric was therefore
not wanted. The ETX metric met many of the wanted characteristics in this
implementation. The described ways of finding the ETX was however not very
appealing. Probes increase network overhead, a high initial ETX has the possibility
of not finding good parents. The low initial ETX value could work, but the
implementation could have long intervals without traffic. This would mean that
the ETX information could be old by the time all parents were tested.

The experiment done in the hallway showed a large correlation between LQI
and PRR, which was also confirmed by the radios documentation. Since ETX is a
product of PRR, the LQI could be used to make an estimated LQI. The estimated
ETX would not be able to measure the asymmetrical properties of the link, but
could provide a good initial value. This implementation used only the LQI for
ETX calculation. In order to get real results, the real PRR of the active links
could be used, providing a correction value to the value calculated by the LQI.
This would take into account asymmetry and other factors. The LQI graph from
the radio data sheet (fig. 4.2) was used to separate the LQI into different regions,
each representing an ETX value. Some overhead was taken when calculating the
ETX values for the given LQI. We had experienced a lower PRR for given LQI
values than the data sheet, we had also seen that the LQI could be asymmetric.
This led to the choice of "safe" ETX values, which probably underestimated the
calculated ETX, but would help ensure links to be at least as good as the ETX
indicated. The initially chosen values are shown in table 5.2. Comparing these
numbers against figure 5.2 shows that these are very safe values. These are values
are being reconsidered later in this document.

The LQI has proven to vary very much within short periods of time, and should
therefore be averaged. An exponential-weighted moving average (EWMA) would
therefore be used when updating the LQI values associated with a node when
updating. This is calculated using the formula:

LQIi = α ∗ LQInew + (1 − α) ∗ LQIi−1

where α is the weighing factor that is used, and LQIi−1 is the previous average.
EWMA is an average that requires little memory, and is easy to implement. It
is used by both TinyRPL and ContikiRPL. α was chosen to be 0.15, as the LQI
varies pretty quickly. TinyRPL uses EWMA for ETX with α = 0.5 for ETX, while
ContikiRPL uses α = 0.2.

33



5.2. CHOOSING OPTIMIZATION GOAL AND METRIC

100 150 200 250

LQI

0.0

0.2

0.4

0.6

0.8

1.0

P
R

R

−90 −85 −80 −75 −70

ED (dBm)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.2: PRR vs LQI and ED from the hallway test
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Figure 5.3: Variances in LQI for a short time period

This figure shows the average, minimum and maximum LQI values for two nodes. The
values are averaged over 30 seconds, where a packet was transmitted every second.
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Figure 5.4: Link asymmetry

These graphs show sent vs received ED, and sent vs received LQI. A symmetric link
would lay on the identity line (white and dashed). Color intensity increases with the
number of observations. Note that color intensity is logarithmic. Small number of

observations might therefore appear larger than they are.
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LQI ETX
>240 1
>220 2
>180 3
>160 4
>100 5
> 70 7
> 0 21

Table 5.2: Chosen ETX values for different LQI regions

In the case of routes with equal LQI, channel energy was to be used as a tie-
breaker.

5.3 Choosing an Objective Function

As stated earlier, there exist two standardized OFs, OF0 and MRHOF. It was
wanted to implement one of these, as a standard often is well tested and tried.

OF0 is a very simple OF, it does not offer any optimization, and does not
guarantee any routes. It is also not designed with a specific metric in mind. It
uses the rank_increase to classify link quality, and supports the choice of a backup
feasible successor in addition to the preferred parent.

MRHOF includes some functionality that makes it more advanced than OF0.
MRHOF can only be used for additive metrics. This requirement is met by ETX,
which is the default path metric in MRHOF. It involves a hysteresis function.
The hysteresis function makes the node stick with a parent unless the better route
exceeds a given threshold. Also, MRHOF supports a parent set of variable size.
MRHOF also has a parameter that enables us to filter out bad links.

The extended functionality in MRHOF made MRHOF the OF of choice.
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Chapter 6

TinyOS

TinyOS[23] is an operating system (OS) targeted for WSNs and embedded devices.
It is not what many users today would associate with an OS, as it doesn’t offer any
distinct user interface. It is a software component-based operating system, working
like a framework to develop application specific code. TinyOS started in 2000 as
a set of Perl script used by a handful of computer science researchers. Version 1.0
was released in 2002. TinyOS have evolved a lot since then. Averaging 25 000
downloads every year around 2012, it is used both commercially (e.g., Zolertia
and Cisco’s smart grid system), and for research. Some companies have their own
diverged branches of TinyOS where own development is ongoing. TinyOS is as of
this writing at version 2.1.2, which was released in August 2012.

TinyOS’ is created for WSNs and embedded systems. TinyOS seeks to save
memory by minimizing state information, minimizing computation and saving
energy, and saving space by minimizing code size. This is done at the cost of
reducing runtime flexibility and generality. The reason for these minimizations is
the high cost for resources in embedded systems, and reduced memory usage.

Since WSNs are very difficult to debug when deployed, TinyOS also aims
at making it hard to create bugs. Following TinyOS’ evolution, stories about
unsuccessful deployment of WSN networks due to bug and errors have been
continuously reduced. One of the techniques that greatly reduce number of bugs is
doing as much at compile time, rather then runtime. [24]

nesC, a programming language based on C, was created alongside TinyOS, and
has evolved hand-in-hand with TinyOS. This is the programming language used for
creating TinyOS applications.

Many OSs allows different application to run on top of the OS. In TinyOS the
application and OS specific are compiled into one image, which is deployed on
the microcontroller. This image, or TinyOS application, assumes control over all
hardware, only one application can therefore be used at once.

6.1 TinyOS Applications

A TinyOS application is made of software-components [25]. The components
used in TinyOS are called configurations and modules. The possible interaction
between components is defined by interfaces. Component can both use and
provide interfaces. A user of a given interface, can interact with a provider of the
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i n t e r f a c e Read < v a l _ t > {
command e r r o r _ t r e a d ( ) ;
e v e n t vo id readDone ( e r r o r _ t e r r , v a l _ t v a l ) ;

}

Listing 6.1: Example of TinyOS interface.

same interface. A technique called wiring decides which components are actually
interacting together in an application. A user of an interface has to be "wired" to a
provider of the same interface. Each component and interface is defined in its own
file with the extension ".nc".

6.1.1 Interfaces

Interfaces define the possible relationships and interaction between components in
TinyOS. It connects the name scopes of components together, making interaction
between components possible. Interfaces are bidirectional, they consist of
commands and events, each responsible for communication in a separate direction.
The interface file does not define or implement any logic, it is merely a declaration
of method names, their inputs, and return values. The actual implementation is
done in modules. Listing 6.1 shows the interface definition for a common TinyOS
interface, Read

Read is a generic interface. Generic interfaces are type-free, the implementa-
tion specifies which types should be used, and these are given as arguments. The
types have to be given by both providers and users of the interface. Generic in-
terfaces with different type-arguments are not compatible. The Read interface is
used to read sensor information from sensors. Since Read is a generic interface,
it can be used with sensors returning different types. e.g., it is compatible with
sensors returning 8-, or 16-bit values.

The Read interface consists of one command, read(). read() does not
have any input arguments, and returns an error_t1. The interface also defines
the event readDone()2, which has two input arguments, err of type error_t,
and val, of type val_t. readDone() returns a void. Commands and events
are explained in section 6.1.5.

6.1.2 Components

A component is either a module or a configuration. Modules and configurations
are similar in the fact that they can both provide or use interfaces, however they
have different purposes: Modules implements logic and functionality at the lowest
level, and is the basic building brick in TinyOS. Configurations instantiate and
"wire" components, but does not define any other logic than this.

1error_t is a TinyOS enum representing error messages, examples of error_t values are SUCCESS
and FAIL.

2Split-phase operations like read() and readDone() are often used in TinyOS, they are discussed
in section 6.3.1.
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module moduleName {
/ / S i g n a t u r e b l o c k

}
i m p l e m e n t a t i o n {

/ / I m p l e m e n t a t i o n b l o c k
}

Listing 6.2: Signature and Implementation block in TinyOS component.

A component declaration consists of two blocks, a signature block, and an
implementation block (see listing 6.2). The signature block defines what interfaces
the component uses or provides, while the implementation block is made of the
actual implementation using nesC code.

Modules

A module is the the lowest-level component of a TinyOS application, this is where
the logic is implemented. A TinyOS application consist of multiple modules, often
separated by functionality or responsibility. A module store states in variables,
and executable logic in methods. It shares many similarities with classes in other
programming languages.

The logic in a module consists of nesC code, which at this level is almost
identical to c code. All parts of a module is private. The allowed interaction with
other components is defined by the interfaces the component use or provide.

Modules are by default singletons in TinyOS (like singleton classes, only one
instance of an object exists in memory, even if it is instantiated more than once). A
module can be defined as a generic module, which makes it a non-singleton object.
Generic-modules can be instantiated more than once (examples of generic system
modules are timers and queues).

For a module to interact with other components, it has to either use or provide
interfaces.

An example of a module file can be seen in listing 6.3. This example shows
us the file, which defines a module with the name moduleName, it uses the Read
interface shown in listing 6.1. The as keyword assigns a different name to the
interface, this improves code readability and makes it possible to the same interface
multiple times. The code will from now on refer to the assigned name rather than
original interface name. The implementation block shows us how the namespace
in the interface is used. The command read() is called in line 10. In line 13 the
readDone() event is implemented, this is done as a function. This example
also shows the direction of commands and events. A user of an interface can
call a command, which executes a method declared by the provider (like a normal
function). Events go the opposite way, an event is signaled by the provider of an
interface, this leads to execution of a method declared by the user of an interface.
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1 module moduleName {
2 u s e s i n t e r f a c e Read < u i n t 1 6 _ t > as Tempera tu r e ;
3 u s e s i n t e r f a c e Read < u i n t 1 6 _ t > as Humidi ty ;
4 p r o v i d e s i n t e r f a c e ABC;
5 }
6 i m p l e m e n t a t i o n {
7 u i n t 1 6 _ t t e m p e r a t u r e ;
8
9 vo id i n c r e m e n t ( ) {

10 c a l l Tempera tu r e . r e a d ( ) ;
11 }
12
13 e v e n t vo id Tempera tu r e . readDone ( e r r o r _ t r e s u l t ,

u i n t 1 6 _ t v a l ) {
14 t e m p e r a t u r e = v a l ;
15 }
16

...
17 }

Listing 6.3: Example of module file.

Configurations

Configurations decide which modules are used, and how they interact. This is done
by instantiating and wiring components. A configuration is different from a module
in that it does not contain any code logic code. It only instantiates components,
and decides which components interact with each other by wiring them. Like
modules, configurations can provide and use interfaces. The signature block in
a configuration definition is equal to a module file, but the implementation block
differs. A configuration implementation instantiates and wire components. An
example of a configuration is shown in listing 6.4. In the implementation block
two components are instantiated, moduleName and TemperatureSensor 3. The
TemperatureSensor would be a component for a temperature sensor, and provide
the Read interface.

6.1.3 Wiring

Wiring connects components that use and provide a given interface. This enables
them to interact with each other.

Only interfaces that are of the same type can be wired. A wiring is done with
a statement consisting of an "arrow" (-> or <-) with a module and interface name
on each side. The "arrow" is pointing from the user of the interface to the provider
of the interface. The arrow pointing towards right is the most common option. In
this case the arrow can be read as "uses". An example of a wiring is shown on line
8 in listing 6.4. This shows a wiring between the components moduleName to

3Generic components are instantiated using "components new genericModuleName(arguments)"
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1 c o n f i g u r a t i o n c o n f i g u r a t i o n N a m e {
2 u s e s i n t e r f a c e i n t e r f a c e A ;
3 p r o v i d e s i n t e r f a c e i n t e r f a c e B ;
4 }
5 i m p l e m e n t a t i o n {
6 components moduleName ;
7 components T e m p e r a t u r e S e n s o r ;
8 moduleName . Tempera tu r e −> T e m p e r a t u r e S e n s o r . Read ;
9 }

Listing 6.4: Example of TinyOS configuration.

1 module User {
2 u s e s i n t e r f a c e Read < type > as Tempera tu r e ;
3 u s e s i n t e r f a c e Read < type > as Humidi ty
4 }
5
6 module P r o v i d e r {
7 p r o v i d e s i n t e r f a c e Read < type > ;
8 }
9

10 c o n f i g u r a t i o n { . . . } i m p l e m e n t a t i o n {
11 components User ;
12 components P r o v i d e r ;
13 moduleName . Tempera tu r e −> T e m p e r a t u r e S e n s o r ;
14 }

Listing 6.5: Shortcut wiring.

TemperatureSensor. moduleName is a user of the interface Read, which
is renamed to Temperature, and TemperatureSensor is a provider of this
interface. If a component uses or provides an interface that is renames using the
keyword as, the new named should be used in the wiring.

Shortcut wiring is very common TinyOS configurations. If a component uses
or provides only one instance of an interface type, its name can be elided in the
wiring statement. In listing lst:shortcut-wiring an example of this is shown. Since
the Provider only provides one instance of the interface type used, the interface
name is elided. The User however uses two interfaces of the same type, and the
interface name must therefore be included.

6.1.4 Packages, Public and private components

Packages are collections of components working together with a common
purpose. A package is a directory in the file-structure. The components which
files reside in the package directory is part of that package.
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Components can be either private or public. Private components have names
that are suffixed with P, while public component names are suffixed with C. There
are no other differences between a private and a public component. Private and
public components are equal to the compiler. The distinction is merely a coding
convention helping programmers to choose components to use.

According to the programming hints in the TinyOS programming manual [25],
public components should be usable abstractions by themselves. If a component
is not usable by itself, but part of a larger abstraction, it should be a private
component. One should never wire to private components that is not a part of
the same package.

6.1.5 Events and commands

Interfaces defined commands and events. Interfaces are bidirectional, and
commands and events specify methods to be used in the different directions.
Commands are methods specified by the provider and initiated by the user of
an interface. Events are defined by the user and initiated by the provider of the
interface.

Listing 6.3 shows us how the interface implementation is done for a user of the
interface. Commands can be called from the user of the interface with the keyword
call (see listing 6.3, line 10). The method name is prepended by the interface
name, separated with a dot (.), similar to class methods in c++. Commands are
declared in the component that provides the interface. The provider of an interface
can send a signal, this is done with the keyword signal as shown in listing 6.6.
A signal leads to the execution of an event. The event is declared by the user of
the interface (see 6.3, line 13).

It is possible for multiple components to be linked to the same component
simultaneously. These situations are normal in other languages where a class is
a singleton, its method can be called from multiple other classes, this situation
is called a fan-in. The users of an interface in TinyOS create a fan-in against
commands. Since the interfaces in TinyOS are bidirectional, we can also get a
situation where several users of an interface are wired to the same component.
When the provider component signals an event, multiple user components of the
interface will receive a signal and trigger the event. This is called a fan-out. In the
case of multiple wirings, one call might lead to several methods being executed.
Since this might lead to different return values, TinyOS uses combine methods.
For instance is the default combine function for error_t to return SUCCESS if all
return values are successful, if one or more return values are not SUCCESS, the
return value will be FAIL.

6.2 Graphic representation

The Unified Modeling Language (UML) is the standard modeling language used
for object-oriented programming. It is used to create visual representations of
software systems. Amongst others, it defines ways to represent sequence and
component diagrams. It does not define representation of component and interface
used by TinyOS . The diagrams used in this paper are similar to the diagrams used
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module moduleName{
p r o v i d e s i n t e r f a c e Read < u i n t 1 6 _ t > ;
. . .

}
i m p l e m e n t a t i o n {

u i n t 1 6 _ t v a l u e ;

vo id someMethod ( ) {
s i g n a l Read . readDone (SUCCESS , v a l u e ) ;

}
}

Listing 6.6: Provider of interface.

by nesdoc, also described in [26]. These are shown in figure 6.1.

6.3 nesC

nesC is the programming language used to make TinyOS applications. Some of
its syntax and use is very similar to c, but there are some differences. Dynamic
memory management is for instance strongly discouraged in TinyOS. nesC also
introduced some new concepts not present in c at all. The biggest noticeable
difference is the introduction of software components, this being interfaces,
configurations, modules and wiring.

nesC uses more explicit variable types than normal in other languages. Instead
of using an int or long, one uses variables that specify the size and type, e.g.,
uint_8t, which specifies an unsigned integer of 8 bits. int and long data
types are platform dependent, and their size can vary from platform to platform.
The types used in TinyOS are very specific, and their size is equal on all platforms.

6.3.1 Split-phase operations

In TinyOS every long-running operation is split-phase operation. As most
hardware operations are split-phase, this creates flexibility where hardware
components can be easily interchanged with software components if the necessary
hardware is not present.

In blocking systems operations does not return before they are finished. While
the operation is running, the rest of the program is blocked (waiting for the
operation to finish). Computers usually solve this problem by using threads that
are running simultaneously. This solution is not very good for embedded systems
like WSNs, as it requires a good amount of RAM. TinyOS uses hardware interrupts
and tasks to perform background computations, these will be discussed in section
6.3.2.

Split-phase operations are non-blocking and asynchronous. They are opera-
tions are bidirectional. A split-phase operation is initiated by calling a method,
which returns immediately. When the operation that was initiated is completed, a

43



6.3. NESC

Configuration Module

(a) TinyOS components are represented by rectangles. Configurations
are made of a double line, where as modules are made by a single line.
The component name is written inside the rectangle.

Generic configuration Generic module

(b) Generic components are rectangles like normal components, but use
a dashed line instead of a solid line.

Interface user Interface provider
Interface name

(c) Component wirings are represented by a line with a triangle in each
end. The triangle points toward the component that provide the interface,
and out of the component that use the interface. The interface name used
to wire the components are written by the line.

Provided
interface

module
Used

interface

Configuration

(d) A configuration can provide and use interface externally. The
diagram for the inner components of a configuration represents these
interfaces as ellipses surrounding the interface names. The wiring
is represented like between normal components. A dashed outline
surrounds the components that are used in the configuration

Figure 6.1: "TinyOS components are represented by rectangles. Modules use a
single line, whereas configurations use a double line"
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vo id s t a r t O p e r a t i o n ( ) {
t e m p e r a t u r e = c a l l

Read . r e a d ( ) ;
}

(a) Blocking

vo id s t a r t O p e r a t i o n ( ) {
Read . r e a d ( ) ;

}

e v e n t vo id Read .
readDone ( . . . ) {

t e m p e r a t u r e = v a l ;
}

(b) Split-phase

Listing 6.7: Example of blocking and split-phase operations

t a s k vo id taskName ( ) {
i =5+5;

}

Listing 6.8: Declaration of a task.

callback is issued. In TinyOS split-phase operations are initiated with a command,
and the callback operation is accomplished by signalling an event. Listing 6.7b
shows usage of the split-phase interface Read interface (shown in 6.1 on page 38).

6.3.2 Execution Model: Tasks,stack and the scheduler

TinyOS execution model is based on split-phase operations, tasks and interrupt
handlers [27].

All code in TinyOS applications are running from either tasks or interrupt
handlers. A task is like a very lightweight procedure call. It does not have any
arguments or return values. While a task has to be posted to run, interrupts are
asynchronous and can happen at any time, and also interrupt other running code.
TinyOS distinguishes between code that can be run only from task (synchronous)
and code that can be run from interrupt handlers (asynchronous). Writing async
code is more challenging as one have to deal with concurrency of variables.
Writing async code is not often needed when making many TinyOS applications,
and will not be described.

Tasks are used in TinyOS to schedule code to run at a later time. All the code
executed by a task is synchronous. Tasks are defined and declared in modules. A
task declaration is shown in listing 6.8.

Tasks do not have a return value, or any input arguments. The code in a task can
do everything a normal module can do; use variables, send signals, call commands
and execute methods. A task is put on the stack using the keyword post as shown
in listing 6.9. Since a task does not have any return value or input arguments,
the stack can be very simple and requires little memory. All state is saved in the
module.

A task can exist only once on the stack. Trying to post a task that already is on
the stack, will return a FAIL. Posting a task always return SUCCESS otherwise.
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vo id someMethod ( ) {
p o s t taskName ( ) ;

}

Listing 6.9: Posting a task.

i n t e r f a c e I n i t {
command e r r o r _ t i n i t ( ) ;

}

Listing 6.10: Init interface.

Tasks are run to completion, one-by-one, and cannot be preempted by any other
tasks. Since tasks are run to completion before the next task can be executed, tasks
containing long-running operations can limit system-responsiveness. It is therefore
recommended to split long-running operations into multiple tasks. This can be
done by creating multiple tasks for the long running operation, or be keeping a
state variable, and have the task repost itself.

Tasks make it easy to create split-phase operations in software. The initiating
command in the split-phase call posts a task to perform the needed operation, and
returns immediately after doing this. When the task is running and the operation
finishes, it signals the proper event for this.

6.3.3 Boot sequence

TinyOS applications does not have a main() method like many other programming
languages. The boot sequence is defined by a number of interfaces and
components, it contains of four steps.

1. Scheduler initialization
2. Component initialization
3. Signal that the boot process has completed
4. Run the scheduler
The application-level component in control of these steps is MainC.

MainC only provides the Boot interface, and uses the interface Init as
SoftwareInit. The Init interface is shown in listing 6.10. The real work
is done by the module RealMainP. RealMainP use two additional interfaces, Init
as PlatformInit and Scheduler. Since RealMainP is suffixed with a P, it
is a private component, which we should never wire against.

The first step in the boot process is to initialize the scheduler, this means that
the later initialization processes are able to post tasks. Tasks are run after each of
the specified steps.

After the scheduler has been initialized, the platform is initialized. A platform
in TinyOS is a hardware platform, which is a specific type of node. A platform is
made up by several components. The platforms are defined in the folder platforms/
in the TinyOS directory, examples of supported platforms are micaz, telosb, and
iris, (the latter will be presented later). Different platforms often use some of the
same chips (e.g., microcontroller, radio), which are defined in the chips/ folder in
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i n t e r f a c e Boot {
e v e n t vo id boo t e d ( ) ;

}

Listing 6.11: Boot interface.

the TinyOS directory. The platform wires chips together. This makes it possible
to share implementation of chips between different radios. Each platform has
a PlatformC component, which is automatically wired to the PlatformInit
interface of RealMainP.

Software initialization is done using the SoftwareInit interface from
MainC. A component that needs to initialize some state when booting the
application can use the Init interface and wire it to MainC. The MainC will call
the command init(). Since multiple components are wired to SoftwareInit,
this will create a fan-out, and all the components that provides an Init interface
that is wired to MainC, will be initialized.

When all the initialization has been done, MainC uses the Boot interface
(listing 6.11 to signal that the boot process is finished and the application is ready
to start. This is done through the event booted()

The event booted() is the equivalent to the main() function found in many
other programming languages. For a component to execute at boot, it has to use
the Boot interface, and wire it against MainC. When the initialization is finished
and the booted() signal is sent, the code will be executed.

6.4 Hardware abstractions

TinyOS uses a Hardware Abstraction Architecture (HAA) consisting of three
layers. Hardware abstractions abstract hardware specific code. This makes
it possible and easy to write hardware-independent applications. Hardware
abstractions can however contain large simplifications, removing the possibility
to use hardware specific properties, which might be wanted. The three layers of
abstractions solve this problem. Using TinyOS it is possible to create hardware
independent applications using hardware abstractions, but also possible to access
hardware-specific properties by using deeper abstractions. Using more hardware-
specific properties is done at the cost of removing hardware independency. This
gives the developer the choice between hardware independency or hardware-
specific properties. Later in this thesis we will see how we have to use hardware-
specific properties of the radio to get link-quality information, which in turn makes
the application hardware-dependent. The abstraction model used in TinyOS is
described in TEP2 [28].

6.4.1 Hardware Abstraction Architecture

The Hardware Abstraction Architecture (HAA) has 3 distinct layers. They offer
different degrees of hardware abstraction. The three layers are:

• Hardware Presentation Layer (HPL)
• Hardware Adaption Layer (HAL)

47



6.5. COMMUNICATION

• Hardware Interface Layer (HIL)

Hardware Presentation Layer is the lowest level layer in the HAA. It is
positioned right above the HW/SW interface. Access to the hardware is made
using memory or port mapped I/O, and the hardware can request servicing by
signaling and interrupt. HPL presents the hardware intricacies and exports a more
readable interface. Each HPL interface is determined by the specific hardware it
represents. Hardware that are similar should however have a similar structure. HPL
components do not contain any state.

Hardware Adaption Layer is above HPL in the HAA structure. It uses the raw
interfaces provided by HPL. The HPL contains most of the implementation, and is
the core of the architecture. Some state is allowed to be saved in the HPL. HAL
abstractions are made for concrete device classes and platform. They provide rich,
customized interfaces, making them easy to use and understand.

Hardware Interface Layer is the highest-level abstraction interface. It creates
hardware-independent interfaces from the hardware-specific HPL interfaces.
These standard interfaces provide access to functionality typically presented by
hardware of the same functionality. This makes HIL interfaces less specific than
HAL interfaces, and might remove some functionality at the cost of independency.
HIL interfaces hide all hardware-specific code, and is the ones used when creating
hardware-independent applications.

The HPL is rarely used when developing TinyOS applications. To create
hardware-independent application the HIL is used. More specific hardware
functionality is accessed through HAL interfaces. Using HAL interfaces makes
the application hardware-dependent, as HAL interfaces differ for hardware
components. This is shown in figure 6.2

6.5 Communication

Communication is a vital part of Wireless Sensor Networks. Two communication
types are normal in TinySO. Communication between nodes using a wireless
communication over 802.15.4, and communication between a node and a computer
using over a serial connection. Radio and serial communication in TinyOS are very
similar, they use the same message buffer (message_t), and the same interfaces.
Crossing the boundary between nodes and computers is therefore very easy. In
addition to this TinyOS uses Active Messages (AM) to multiplex access to the
radio, making it easier to for multiple services in an application to share the
communication resource. AM is TinyOS specific, and is not interoperable with
other operating systems.

TinyOS also supports IPv6 over Low power Wireless Personal Area Networks
(6lowpan), which allows IPv6 packets to be sent and received over 802.15.4
networks. This enables communication between different operating systems.

While TinyOS have some interfaces providing multi-hop communication, these
are tied together with routing protocols, and will not be discussed.
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Figure 6.2: Hardware Abstraction Architecture in TinyOS

802.15.4 Header AM type data 802.15.4 CRC

(a) TinyOS Frame (T-Frame)

802.15.4 Header 6lowpan AM type data 802.15.4 CRC

(b) Interopable Frame(I-Frame)

Figure 6.3: Frame types used by TinyOS for communication.

6.5.1 Active Message Layer

TinyOS uses a layered model for its communication stack. Each layer has its own
header and footer surrounding the payload. All of this is inserted into the payload
of the lower layer, which in turn has its own footer and header.

Active Message (AM) is the lowest network layer exposed by TinyOS.It
implements unreliable single-hop communication. AM messages contain a 8-
bit type number. The type number is used to identify and packet types and
dispatch them. This makes it easy to separate radio traffic into different services
in components. The AM layer is often implemented right on top of the radio.
AM uses message_t, described in section 6.5.4, as its message buffer. TinyOS
AM messages are transmitted over 802.15.4 using the TinyOS-frame (T-frame)
shown in figure 6.3. This format is for networks where there are no other operating
systems using the same communication channel [29]. The I-frame is the default
frame used by TinyOS.

AM communication uses several interfaces for basic communication, some of
these are:
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i n t e r f a c e AMSend {
command e r r o r _ t send ( am_addr_ t addr , message_ t ∗ msg ,

u i n t 8 _ t l e n ) ;
command e r r o r _ t c a n c e l ( message_ t ∗ msg ) ;
e v e n t vo id sendDone ( message_ t ∗ msg , e r r o r _ t e r r o r ) ;
command u i n t 8 _ t maxPayloadLength ( ) ;
command vo id ∗ g e t P a y l o a d ( message_ t ∗ msg , u i n t 8 _ t l e n

) ;
}

Listing 6.12: The AMSend interface

• AMSend is a split-phase interface used to fill and send packets. It is shown
in listing 6.12

• Receive: an interface for receiving packets. It is shown in listing 6.13
• AMPacket has accessors for most message_t abstract data types (e.g.,

AM source and destination addresses and AM packet types).
• Packet : has access methods for the payload and its length. The Packet

interface is used to read or write the payload.
[30]

6.5.2 Basic sending and receiving

AMSend

AMSend is the interface used to send and receive AM packets. Its specification is
shown in listing 6.12. AMSend is a split-phase interface. It has a queue of depth 1.

Packets are sent using the command send(...), its input arguments is a AM
destination address(addr), and a message_t buffer being the actual package.
The len argument specifies the size of the data in the packet payload. A successful
transmission of a packet is signaled by the event sendDone(...).

Since the queue depth is only one and the message buffer is passed by reference
to the send method, the user must be careful when using this interface. In the time
after the send(...) command have been called, and the sendDone(...)
event has been signaled, the message buffer must not be changed at all, as this
might affect the process of sending the message.

Receive

The Receive interface is used when receiving messages from the AM layer,
its definition is shown in listing 6.13. The receive interface has a buffer-swap
policy. Using this interface wrong is one of the most common ways of introducing
bugs in TinyOS applications[31]. The buffer-swap policy ensures that data-rate
mismatches do not occur between layers. The buffer-swap policy states that the
handler of the event must return a message buffer that it will not use later, this can
be done by:
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i n t e r f a c e Rece ive {
e v e n t message_ t ∗ r e c e i v e ( message_ t ∗ msg , vo id ∗

pay load , u i n t 8 _ t l e n ) ;
}

Listing 6.13: The Receive interface

g e n e r i c c o n f i g u r a t i o n
AMSenderC ( am_id_ t
AMId) {

p r o v i d e s {
i n t e r f a c e AMSend ;
i n t e r f a c e P a c k e t ;
i n t e r f a c e AMPacket ;
i n t e r f a c e { Packe t−

Acknowledgements }
as Acks ;

}
}

(a) AMSenderC

g e n e r i c c o n f i g u r a t i o n
AMReceiverC ( am_id_ t t
) {

p r o v i d e s {
i n t e r f a c e Rece ive ;
i n t e r f a c e P a c k e t ;
i n t e r f a c e AMPacket ;

}
}

(b) AMReceiverC

Listing 6.14: AMSenderC and AMReceiverC configurations

• returning the same buffer that is used in the sendDone(...) event. The
buffer must not be accessed later, if any data is needed from it, this should
be copied in the handler.

• swap the buffer and return a different buffer.
The buffer returned in the handler is used by the lower layer to store the incoming
packets, if this does not exist, there is no room to save the received packets.

The basic components used to send and receive are AMSenderC and
AMReceiverC. Their signatures are shown in listing 6.14. Both These are
generic components and has to be instantiated with the keyword new(e.g, new
AMReceiverC (AMType)) keyword. One component has to be instantiated
for each AM type to be used, the AM type is given as an input argument to the
The AM type to be used for that component is given by the input argument when
instantiating the component. For each AM type to be used, separate objects have
to be instantiated.

6.5.3 Snooping messages

In addition to the components for basic sending and receiving, two components
exist to snoop messages, AMSnooperC and AMSnoopingReceiverC [30]
. Snooping messages is the process of receiving and reading messages
that are not intended for us. AMSnooperC and AMSnoppingReceiverC
have the same signature as AMReceiverC. AMSnooperC is used to receive
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t y p e d e f n x _ s t r u c t message_ t {
n x _ u i n t 8 _ t h e a d e r [ s i z e o f ( m e s s a g e _ h e a d e r _ t ) ] ;
n x _ u i n t 8 _ t d a t a [TOSH_DATA_LENGTH ] ;
n x _ u i n t 8 _ t f o o t e r [ s i z e o f ( m e s s a g e _ f o o t e r _ t ) ] ;
n x _ u i n t 8 _ t m e t a d a t a [ s i z e o f ( m e s s a g e _ m e t a d a t a _ t ) ] ;

} message_ t ;

Listing 6.15: message_t the TinyOS message buffer.

messages that are not destined to the nodes address, or the broadcast address.
AMSnoopingReceiverC receives all messages, regardless of their destination
address. Because of the buffer-swap policy, an AMSnoopingReceiver cannot
coexist with a AMReceiverC or AMSnooperC for the same AM type.

6.5.4 message_t

message_t is the message buffer type used in TinyOS. It is used for both serial
and radio communication. Its structure can be seen in 6.15.

From the listing we can see that message_t is a nx_struct. The nx_-
specifies an external type. External types are an extension to C. It allows
definition of types with platform independent representation. TinyOS uses nx_-
types for all communication. There is defined nx types for structs(nx_struct),
unions(nx_union), and integers(nx_uintN_t, nx_intN_t and more for
N=8,16,32,64). External structs and unions can only contain external types. [32]

Like many others network messages, message_t consists of a header, a data, a
footer, and a metadata field. The size of the data payload is defined in TOSH_-
DATA_LENGTH, which is 28 bytes by default. TOSH_DATA_LENGTH can be
redefined at compile time, but is constant for all instances in an application.
Received packets with data-fields larger than TOSH_DATA_LENGTH will be
discarded. The fields in message_t objects should not be accessed directly, only
by mutator functions. The header and footer contain elements which are normal
in other network message structures. The metadata field contains options from
the radio. For the RF230 radio, this information includes information about link
strength and quality.

The actual structure of the header, footer and metadata is link layer dependent.
Link layers have different header and footer structures, these must therefore
be specified by each separate radio implementation. message_header_t,
message_footer_t, and message_metadata_t also has to be specified
for each platform. The platform definition should include all the different link
layers present on the platform in a union. Since the size of a union is the size
of the biggest element in it, this ensures each element is big enough for all the
different link layers, and that the same buffer object can be used when crossing
different link layers [33]. The platform file for the IRIS platform, which will be
presented later is shown in listing 6.16.

The IRIS platform has a rf230 radio, and a serial stack, which we can see
are both included in the message_header. This makes it possible to use the same
message_t objects on the rf230-radio, and the serial stack, messages can easily
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t y p e d e f un ion message_heade r {
r f 2 3 0 p a c k e t _ h e a d e r _ t r f 2 3 0 ;
s e r i a l _ h e a d e r _ t s e r i a l ;

} m e s s a g e _ h e a d e r _ t ;

t y p e d e f un ion m e s s a g e _ f o o t e r {
r f 2 3 0 p a c k e t _ f o o t e r _ t r f 2 3 0 ;

} m e s s a g e _ f o o t e r _ t ;

t y p e d e f un ion message_me tada t a {
r f 2 3 0 p a c k e t _ m e t a d a t a _ t r f 2 3 0 ;

} m e s s a g e _ m e t a d a t a _ t ;

Listing 6.16: Platform message definitions for the iris platform

cross link layers [30] .

6.5.5 ActiveMessageC

ActiveMessageC is the HAL component providing access to AM components. Ac-
tiveMessageC is used by AM components previously mentioned. ActiveMessageC
provides the same interfaces as these other components, and could be used instead
of these. However the AMSenderC provides a virtualization of the radio with 1-
deep queue for each instantiation of the component. Users of the component do
therefore not need to know whether the radio might by occupied by any other users.

ActiveMessageC must however be used. As the radio is not turned on by
default, the interface SplitControl provided by ActiveMessageC has to be
used to turn on the Radio.

There exist ActiveMessageC HIL components for each radio. The HIL
components have a prefix to them (e.g., RF230ActiveMessageC for the RF230
radio). To gain access to some metadata fields, these must be used instead of the
HAL ActiveMessageC components.

6.5.6 Serial communication

Serial Communication in TinyOS is very similar to radio communication. They
both use the AM layer, and both uses the same message buffer. This makes it
possible to easily receive messages over the radio and forward them to the serial
port.

The components used for serial communication is also very similar to the ones
used for radio communication. ActiveMessageC, AMSenderC, and AMReceiverC
is simply prefixed with Serial (e.g., SerialActiveMessageC). They are so similar
that replacing the components and rewiring is the necessary action to communicate
over the serial port instead of the radio.

TinyOS provides several options from communicating with a TinyOS node
from the computer using a serial connection. There exists software to:

• Print raw information from received messages.
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• Print debug messages received by using dbg(...) functions provided by
TinyOS.

• Create a TCP socket forwarding messages using the serialforwarder.
SerialForwarder is an application implemented in both c and c++. It creates

a listening tcp socket at a tcp port for a given connection. The tcp socket is
used to forward messages between the socket and the serial port. SerialForwarder
multiplexes connections. This makes for multiple clients to use the tcp connection
against the mote simultaneously. TinyOS comes with a debug library that makes
debugging over the serial connection easy. A library and component is used in the
TinyOS code. The debug(...) function sends text messages over the serial port
to the computer. A java application included with TinyOS is used to read debug
messages from the serial port. It is not possible for two applications to have the
serial port open simultaneously. Using the serialport it is easy to use the debug
application while running a separate application also using the serial port. It is
therefore easier to create applications utilizing the serial port, separate applications
can be created with separate responsibilities. A separate application can use the
serial connection for data gathering, while the debug application simultaneously
prints debug messages.

For some programming languages TinyOS provides APIs that makes it possible
to interact directly with motes connected to a serial port (e.g., java, c and c++).
TinyOS provides APIs to communicate with motes through the serial forwarder for
additional programming languages to the ones previously mentioned (e.g., python).

message interface generator (mig) is a tool included with the nesC compiler.
mig creates code to process messages used in TinyOS. These messages can be
user-defined. The message must be a struct, nx_struct, union, or nx_-
union. The arguments used with mig specify which message types code should
be generated for, the source file that contains the definition for the message type.
Arguments also decide which programming language the created code should be in,
and necessary options (e.g., class name). The generated methods from mig remove
the need to manually extract the necessary fields from messages. Changing the
structures of messages also becomes much easier, although unwanted, this might
happen in the development of applications.

6.6 BLIP 2.0 and TinyRPL

In addition to ActiveMessageC, TinyOS includes a IPv6/6lowpan implementation
called Berkeley Low-Power IP stack. Due to the restraints in LLN network,
6lowpan was created to enable IPv6 communication between low power devices
with "normal" using IPv6. IPv6 requires a minimum MTU of 1280 bytes [34],
and the maximum size in 802.15.4 is 102 bytes, 6LoWPAN fragments packets to
make these compatible [35]. 6LoWPAN specifies header and address compression
to be able to use IPv6 128 bit addresses in 802.15.4. Using UDP with IPv6 would
leave 33 bytes out of 102 to the application payload. This would introduce alot of
overhead (= 68%) for the headers. Header and address compression is therefore
done.

BLIP 2.0 is the de-facto IPv6 stack in TinyOS. It implements header
compression, neighbor discovery and DHCPv6. BLIP 2.0 also uses a routing table,
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Figure 6.4: BLIP and TinyRPL network stack.

and routing functionality. The BLIP 2.0 implementation also supports UDP, which
makes it possible to easily interact with normal computer applications. A network
using BLIP 2.0 is usually a bit different from many other TinyOS applications. A
normal TinyOS application often has a specific computer application that receives
application specific packets from the network over the serial port. Using BLIP
2.0, this would look more like a traditional computer network. A router with
an IPv6 and 6LoWPAN implementation connects the WSN to another network.
This enables both networks to communicate. Messages between the WSN and
the computer are for instance sent as UDP. Doing it this way strongly supports
the thought of the "Internet of Things", where every node is reachable from the
Internet. Included with TinyOS is a ppp application, which sets up a tunnel between
a computer and a serial node. This makes it easy to connect networks using BLIP
2.0 with normal networks.

6.6.1 TinyRPL

TinyRPL is a RPL implementation in TinyOS. It is based on the most recent
version of RPL draft 17. It supports the drafts basic options, creates upward and
downward routes, support storing mode of operation. It can use OF0 or MRHOF,
with the ETX metric. TinyRPL strongly interacts with the BLIP implementation.
The TinyRPL implementation have also been tested and found compatible with
Contiki’s RPL implementation [36].

An overview of the BLIP 2.0 and TinyRPL stack can be found in figure 6.4.
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6.7 Power management

The consumed power of a node is built up by the power consumption of several
components. Their power usage is dependent on whether they are on or off, and
what they are doing. Nodes should consume as little power as possible, and be able
to operate for a long time. It would be ideal if the operating system controlled the
power state of the different components, optimizing it as much as possible. Many
OSs only provide necessary power controlling functionality, leaving most of the
responsibility to the specific application. TinyOS automatically controls power for
many operations. Automatic power control in TinyOS comes very close to hand-
tuned applications in many of cases [37].

Microcontroller

The power management of the microcontroller is done automatically by TinyOS.
TinyOS automatically figures out the lowest possible power state the processor can
be in at the given moment, and sets it to this state. Processors often have different
levels of power states, and how deep they can go depend on what functionality is in
use, and should be able to "wake" the microcontroller. A timer that is running, or
an active USART, can stop the microcontroller from entering a deeper sleep state.

Peripherals and subsystems

Some peripherals and subsystems must be manually controlled by the application
developer. Examples of this are the radio and USART connection. These
can constantly consume a lot of power when enabled. They have to be
explicitly enabled while the application is running in most situations. Interfaces
such as these are controlled using the StdControl, SplitControl, or
ASyncStdControl interfaces.

Parallel vs serial sensor reading

Other peripherals, like sensors, are automatically powered when needed. These
peripherals are accessed on demand. Since they only need to be powered in short
periods while they are being used (read the value of a sensor, write something
to flash), the developer doesn’t have to control these. There are however some
techniques techniques that enable TinyOS to optimize energy management when
doing tasks like these. One of these methods is to call methods that use peripherals
in parallel instead of in serial. This can be applied when reading several sensors
at the same time. The serial method of doing this would be to trigger the reading
of a sensor when another sensor reading is finished. Doing this in parallel, calls
all the read methods at the same time. Sensors are often connected to the same
bus, part of the process of reading a sensor involved turning this bus on and off.
If the sensors are being read serially, the bus will be turned off when one sensor
is read, but shortly after turned on again to read the next sensor. Doing this work
in parallel enables TinyOS to schedule these operations, this could involve turning
the bus on once, read the sensors, and turn the bus off again. This would be more
energy efficient, as the time the bus is powered is reduced. Listing 6.17 shows how
to do read operations in parallel and serial [38].
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vo id s t a r t O p e r a t i o n ( ) {
c a l l Tempera tu r e . r e a d ( ) ;

}

e v e n t vo id Tempera tu r e . readDone ( . . . ) {
/ / Some work
c a l l Humidi ty . r e a d ( ) ;

}

e v e n t vo id Humidi ty . readDone ( . . . ) {
/ / Some work

}

(a) Serial

vo id s t a r t O p e r a t i o n ( ) {
c a l l Tempera tu r e . r e a d ( ) ;
c a l l Humidi ty . r e a d ( ) ;

}

e v e n t vo id Tempera tu r e . readDone ( . . . ) {
/ / Some work ;

}

(b) Parallell

Listing 6.17: Example of reading sensors in serial and parallel.
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6.8 Low Power Listening

The radio is one of the most power consuming components in a node. Power con-
sumption while receiving is very close to power consumption while transmitting
in many radios. There is not much the operating system can do to reduce energy
consumption when transmitting.Many WSN applications have very little network
traffic and nodes spend most of their time listening idle for network messages,
without actually receiving any messages. Network activity in WSN scenarios can
be very sparse, and the nodes are idle-listening most of the time. This leads to
unnecessary high power consumption. Idle listening power consumption can be
reduced by turning the radio off, and periodically turn it on to detect if someone is
trying to transmit. This is called duty cycling [39] .

6.8.1 Media Access Control (MAC) protocols

Low power Media Access Control(MAC) layers for WSN is an area where a lot of
research has been done. This has resulted in many different MAC protocols. Some
popular low power MAC protocols for WSNs are S-MAC, B-MAC and X-MAC.
The MAC layer is also, amongst other things, responsible for avoiding collisions,
use the channel efficiently, and share the channel fairly.

The MAC layer can reduce the radios energy consumption by duty cycling the
radio in periods of idle listening. The cost of this can be reduced throughput, and
higher energy consumption for the transmitter.

When the radio is duty cycling it is often in the off state. The radio is
periodically turned on to check if there is any traffic on air. Energy consumption
is reduced when idle listening since radios energy consumption is several orders
less turned off compared to when listening. Since a receiver’s radio is not always
on, the transmitter will have to transmit for a longer time to ensure the receivers
radio wakes up, and receives the message. Three states often exist when receiving
messages with low power. While the radio is turned off, the receiver is idle, the
radio is briefly turned on to detect any transmitting nodes, if a transmission is
detected, the radio stays on to receive the message.

1. The radio is turned off in an idle state to save energy. The time in this state
is called the sleep period.

2. The radio is briefly turned on to detect if any active transmissions. If no
transmissions are detected, the radio returns to idle mode.

3. If a transmission is detected, the radio enters a receive state. In this state the
radio is listening like it normally would.

The process of detecting that a node is transmitting, affects both the receiver
and the transmitter, as stated, transmitting nodes have to transmit more to make sure
that the receiver is able to detect the transmission. This process is done differently
in different MAC protocols. B-MAC and X-MAC will be briefly explained, these
are both single-layer protocols, utilizing information from only one layer for the
detection state, B-MAC uses physical-layer carrier sensing, while XMAC uses
link-layer wakeup packets. The cross-layered protocols BoX-MAC-1 and BoX-
MAC-2 will also be introduced.

B-MAC [40] is a CSMA MAC protocol designed for low power WSNs. B-MAC
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utilizes layer 1 information to detect activity on the link. MAC uses Clear Channel
Assessment (CCA) and packet backoffs for channel arbitration. B-MAC duty
cycles the radio to reduce power consumption. The channels energy is periodically
sampled to check for activity. CCA is normally used to check that a channel is
not busy before transmitting. This is done by comparing the channel energy to
the noise floor. B-MAC uses CCA the other way around, to check whether for
active transmissions. If an active transmission is found, the radio enters the receive
state. B-MAC prepends every transmitted message with a preamble. This preamble
must be at least as long as the receivers sleep period. When a receiver finds that a
transmission is active, it must keep its radio on long enough to receive the packet.
If no packet is received within a certain time (e.g., if a false detection has been
made), the radio is turned off by a timer. A B-MAC example is shown in figure
6.5a. When using B-MAC, all nodes detecting the preamble have to turn on their
radio while the preamble is being sent. This overhearing is a waste of energy, as
radios have to be listening to packet not destined for them. This introduces a lot of
aggregate energy consumption. The long preamble also increases network latency,
as it has to be transmitted for a long time, since the sender does not know whether
the receiving node is listening or not.

X-MAC [41] tries to solve some of B-MACs problems using a shortened
preamble approach. Like B-MAC, radio duty cycling is used to save energy.
XMAC uses layer 2 information to detect if the channel is active. Instead of
sending one large preamble like B-MAC, X-MAC sends strobed preambles (wake
up packets). The preambles are short and contain destination information. Since
the recipient only uses layer 2 information, its detection phase must be long
enough to be able to read a whole packet. The destination information allows non-
recipients to go right back to sleep. A pause is inserted between every transmitted
preamble. When a node detects a transmission destined for it, it can send an early
acknowledgment in the gap between two preambles. This informs the transmitter
node that the receiver is listening, and the packet can be sent immediately right
away. The unnecessary transmission of preamble after the receiver has woken up, is
removed. This reduces time spent transmitting and receiving, which reduces energy
consumption. Since less preamble have to be transmitted, network throughput and
latency can also be improved. An example of X-MAC can be seen in figure 6.5b.

BoX-MAC [42] BoX-MAC-1 and BoX-MAC-2 are cross-layer MAC layers.
BoX-MAC-1 uses mostly layer 1 information to detect activity, while BoX-MAC-2
uses mostly layer 2 information to detect activity. Both protocols get inspiration
from B-MAC and X-MAC, as can be seen in their name. They can however use up
to 50% less energy than X-MAC, and 30% less energy than B-MAC.

BoX-MAC-1 [42] BoX-MAC-1 is similar to B-MAC, but is improved and
utilize layer 2 information to decide whether to listen or not. The preamble is made
up by continuously transmitting packets, which contain destination information
like X-MAC. However, the pause introduced between preamble packets in X-MAC
is not used. Like B-MAC, the full length of the preamble is constant, and always
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transmitted. The added layer 2 information prevents non-recipient from waking up
unnecessary.

BoX-MAC-2 [42] BoX-MAC-2 is most similar to X-MAC, but additionally
use layer 1 information to detect transmissions. BoX-MAC-2 first uses CCA like
B-MAC to detect activity. This reduces the time the radio has to be in the detection
state, as it does not have to read a whole message like X-MAC. Since the detection
does not require reading a whole packet, longer messages can be sent transmitted4.
The added time needed to read the whole packet is not an issue now. BoX-MAC-
2 therefore transmits the original data-packet from the beginning, instead of the
preamble. This also removes the need for an early acknowledgment message from
the receiver to indicate that it is listening. Like XMAC, small pauses are inserted
between the packets. When a node detects an active channel using CCA, it turns
on the radio long enough to receive a whole packet sent by the transmitter. The
receiving node can now return an ack when it has received the packet. This makes
the transmitter stop. BoX-MAC-2 is shown in figure 6.5c.

6.8.2 Low Power Listening Interface

TinyOS provides the ability to use a low power MAC protocol, this is called
Low Power Listening (LPL) in TinyOS. The first LPL implementation in TinyOS
used the B-MAC protocol. BoX-MAC-2 is the currentLPL MAC protocol
used by TinyOS[43]. TinyOS uses the LowPowerListening interface to
control the low power functionality. It is provided by ActiveMessageC.
LowPowerListening is currently supported on 3 radios (cc1000, cc2420 and rf230).
As can be seen by the interface in listing 6.18a, one can set the local and remote
wakeup interval. The wakeup interval is given in milliseconds. The local wakeup
interval decides how often the radio should check the channel for activity. The Low
Power Listening wakeup intervals can also be set in the applications Makefile, this
is shown in listing 6.18b. The remote wakeup interval is the receivers wakeup
interval, and is set for every packet sent, and is used to decide how long a packet
has to be transmitted. This enables nodes in a network to have different wakeup
intervals. In a heterogeneous network consisting of both powered and battery-
operated nodes, the powered nodes can be always listening. Power consumption
can thus be reduced when transmitting to power operated nodes.

6.9 TOSSIM

TOSSIM is a discrete event simulator for TinyOS WSNs. TinyOS applications
can be compiled to the TinyOS frameword. This makes it possible to run
TinyOS applications on computers, in repeatable and controllable environments.
The task of debugging and verifying a TinyOS application becomes much easier
when run in a simulated environment. TOSSIM simulates the entire TinyOS
application. It works by replacing components with simulation implementations.
There exist generalized components, but also components that simulate a specific
chips behavior.

4In XMAX, the packets are short to reduce time spent detection
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Figure 6.5: Low power saving MACs

This figure shows listening (tx) and transmitting (rx) node. A blank line indicates that the
radio is in the off. Dots along the line indicate that the radio is listening. Grey boxes

indicate the node is detecting if there is an active transmitter.
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i n t e r f a c e LowPowerLis ten ing {
command vo id s e t L o c a l W a k e u p I n t e r v a l ( u i n t 1 6 _ t

i n t e r v a l M s ) ;
command u i n t 1 6 _ t g e t L o c a l W a k e u p I n t e r v a l ( ) ;
command vo id s e t R e m o t e W a k e u p I n t e r v a l ( message_ t ∗msg ,

u i n t 1 6 _ t i n t e r v a l M s ) ;
command u i n t 1 6 _ t g e t R e m o t e W a k e u p I n t e r v a l ( message_ t ∗

msg ) ;
}

(a) LowPowerListening interface

CFLAGS += −DLOW_POWER_LISTENING
CFLAGS += −DLPL_DEF_LOCAL_WAKEUP= i n t e r v a l M s
CFLAGS += −DLPL_DEF_REMOTE_WAKEUP= i n t e r v a l M s
CFLAGS += −DDELAY_AFTER_RECEIVE= i n t e r v a l M s

(b) LowPowerListening in Makefile

Listing 6.18: Using low power listening

A TinyOS application that has been compiled to TOSSIM is only a library, it
requires another application to configure and run the application. The library that
has been made can be used by python or c++. While c++ often is more efficient,
python offers more flexibility through its interpreter. Using the python interpreter
interactive mode enables the user to control the application as it is running. Python
applications can also be saved in files, which can be read by the interpreter. This
makes it easy to repeat simulations, and compare changes in complex simulations.

6.9.1 Debugging TOSSIM applications

Debugging applications is easy in TinyOS. The method dbg(string -
outputChannel, string debugMessage). The second argument,
debugMessage, is the string as it will be shown in TOSSIM. The first argument,
outputChannel, defines which outputChannel should be used. In the TOSSIM
application configuration, a user can define which output channels should be used,
and where they should be sent (e.g., standard out, a file). This makes it easy to filter
out messages based on which functionality you want to debug. There are also some
output channels defined by the library, which can be used (e.g., AM and CRC).

6.9.2 Network topologies

TOSSIM has the ability to create network topologies. By default, the radio model
used by TOSSIM is signal-strength based. In a clean application, no nodes are
connected. Connections between nodes have to be manually added, this is done
using the radio object from the TOSSIM library. The used method is add(src,
dest, gain), a connection is made from src to dest with a given gain. This
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connection is asymmetric, it is therefore necessary to add connections both ways
for two nodes to be able to speak together. This also enables us to simulate
asymmetric connections.

TOSSIM simulates RF noise and interference from other nodes and other
outside phenomenas. This is done by adding a noise trace. Some noise traces
are included with TinyOS.
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Chapter 7

Implementation

This section describes the use and implementation of the used TinyOS application.
Section 7.1 reasons as to which RPL implementation the work should be based
upon. The decision taken here meant that much work implementing features had
to be done. Section 7.2 describes the required RPL features and mechanisms. An
overview of the resulting RPL implementation is described in 7.3. An overview of
the software process of processing DIO messages and creating upward routes are
shown in 7.4, and an overview of the implemented repair mechanisms are shown in
section 7.5. The implementation of a forwarding mechanism is thereafter presented
in section 7.6

7.1 Choosing RPL implementation

Two pre-existing RPL implementations were available in TinyOS: TinyRPL, the
RPL implementation included with TinyOS., and a limited implementation of RPL
done by a previous student at the University of Oslo(UiO) Anders Taranger. Some
work was done trying to make the TinyRPL work on the iris nodes, as this was not
natively supported (sec: 7.1.1). Therefore, the implementation made by Anders
Taranger was used as a basis, and further developed (sec:7.1.2).

7.1.1 Trying to make TinyRPL work on IRIS nodes

TinyRPL is a mature and tested RPL implementation. It interacts with the BLIP2.0
layer, which provides IPv6 support through the 6LoWPAN layer. It also provides
a modularized system, making it easier to implement further functionality.

The IRIS nodes use the RF230 radio. As of the start of this master thesis,
BLIP2.0 was not supported on this radio. Since TinyRPL heavily relies on
BLIP2.0, it could also not be used. Investigating the TinyOS mailing-list, a git
repository containing a changes made to TinyOS that were not included in the
official version. Using the TinyOS from this repository, BLIP 2.0 compiled for the
rf230 radio.

Being able to compile BLIP2.0 and TinyRPL, a TinyRPL test application
included with TinyOS was compiled. The compilation was successful, but showed
that BLIP2.0 and TinyRPL require much memory. The memory requirement for
this application was 9624 bytes. This exceeded the 8kB of memory available in the



7.1. CHOOSING RPL IMPLEMENTATION

IRIS nodes. The given changes were made to TinyRPL and BLIP to try to reduce
its memory consumption:

• Reduce the maximum amount of parent nodes in TinyRPL (MAX_PARENT)
default value is 20).

• Reduce the size of the routing table used by blip (ROUTE_TABLE_SZ,
default is 20).

By reducing MAX_PARENT to 1, and ROUTE_TABLE_SZ to 3, the memory
requirement was reduced to 8456 bytes, which still exceeded the memory of the
IRIS node. The memory consumption could possibly be further reduced, but not
knowing if BLIP would even work even if it compiled, it was decided not to use
the TinyRPL implementation. If we were to use TinyRPL, new nodes would have
to be bought, or support for BLIP2.0 implemented for the rf230 radio. Due to cost
and time constraints, none of these were preferable. The choice was therefore to
use Anders’ implementation of RPL

7.1.2 Anders’ RPL

The second available RPL implementation was done in Anders Tarangers master
thesis. It implemented core RPL functionality. Upward creation upward routes
using DIOs, simple DIS mechanisms were implemented. No repair mechanisms
were supported, and rank was not improved. This implementation chose parents
by optimizing hop count. Also some code that simulated energy usage when using
the TOSSIM simulator was implemented. This implementation used the AM layer
for communication, and was therefore supported on the IRIS nodes.

Except for a few parts, most of this implementation was done in one
component, RplC. The RPL implementation was mixed up with forwarding
mechanisms and application-specific stuff in this one component. Many c
preprocessing flags were used throughout the code to enable specific kinds of
functionalities. Some of these enabled use with TOSSIM and AVRORA(another
simulation software). Many of these preprocessing flags were dependent on each
other, and was set manually in the Makefile. It also contained simulation specific
code that simulated power usage in TOSSIM, and enabled nodes to signal that they
were low on energy.

Since RplC was not structured, it was difficult to get an overview over its
workings. This implementation was tested as was for a while, with some added
functionality. The Makefile was rewritten and an accompanying configuration
file created, using the configuration file removed the need to manually update
all preprocessing files when making a change. Later, work started to split the
different functionalities into different components, with separate responsibilities.
Most of the c preprocessing flags was removed. Most functionality except for the
basic sending and transmission of DIO messages were totally reimplemented. This
resulted in an implementation, which were more structured, and had functionality
separated into different layers.
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7.2 RPL Implementation Requirements

Since a well-implemented, mature and tested RPL implementation for TinyOS
already existed, the goal was not to create another one. The goal was however to
create a basic implementation that provided enough functionality for the resulting
scenario. Compatibility with other RPL implementations was also not needed. The
RPL implementation was to be used for data collection. Some of the requirements
for the RPL and the accompanying forwarding implementation were:

• Should be able to create upward routes to be able to support a data collecting
application.

• No need for upward routes was needed, therefore support for DAO messages
was not required. The only supported MOP would therefore be 0.

• The implementation should support some kind of repair. A global repair is
at least required, and a local repair mechanism was strongly preferred

• The implementation should be able to detect loops. The detection of a loop
should trigger a local repair.

In addition to the RPL implementation, a routing layer also had to be
implemented to forward messages. Some of the requirements for the routing layer
was.

• Should cooperate with the RPL component with the purpose of
– Exchange route to reach the necessary node. In a collection application

this would be root, and the necessary route would be the preferred
parent

– Allow cooperation with RPL to avoid loops by checking the RPL
Packet Information.

– Signal RPL if the parent is lost
– Update RPL with metric information if needed.
– Should check the availability to a parent before it is chosen.

• Some sort of reliability should be provided, merely in the form of layer 2
acknowledgments and retransmissions

• Should implement a queue for forwarding messages. Since the AM layer
does not have any buffer, this is needed to make sure there is room for burst
of messages.

• Should be able to forward messages over the serial connection to a connected
computer.

This has resulted in a limited implementation of basic RPL functionality, and a
forwarding mechanism. The RPL Implementation includes:

• Creation upwards routes using DIO messages.
• Global repair using a version number. The version number can be

periodically incremented.
• Local repair in the event that a node can not select a parent.
• Using DIS messages to request DIO messages from neighbor
• Checking of RPL Packet Information to detect loops when forwarding

messages.
This implementation is not supposed to be interoperable with any other RPL

implementations. The focus was to make a working implementation that could be
deployed and used. Some shortcuts have therefore been taken.
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7.3 RPL Package

This section describes the results of the RPL implementation. An overview of
the created components is shown. The interaction between them, and other used
components are represented. Thereafter some core functionality is described. The
network stack implementation consists of two packages: DataSend, and RPL.
The RPL package is responsible for the RPL and OF mechanisms. DataSend is
responsible for message forwarding. It acts like Layer 3. Both RPL and DataSend
use the AM layer for communication. Since DataSend uses RPL to find the
preferred routes, it is not usable by itself.

7.3.1 Overview

The RPL Package consists of some components. Some of these are specific to the
core RPL functionality, and some are responsible for the OF functionality. The
components implementing core RPL functionality are:

• RplCoreP – Is a module implementing core RPL functionality. Some of the
functionality implemented in this module is:

– Sending and receiving DIO and DIS messages.
– Global repair
– Local repair
– Validate RPL Packet Information

• RplC – RplC is the configuration that instantiates and wires the components
that are needed by RPL. RplC exports the appropriate interfaces needed for
interaction with other components outside the package.

• TrickleTimerC – Implements the trickle timer. This is not a generic
component, and can therefore not be used to create separate trickle timers.

The components implementing the OF functionality are:
• VofP –Is a module containing the OF implementation. It is an abbreviation

for "Vestbø Objective Function (VOF)". This module is responsible for:
– Store and maintain rank
– Store and maintain the neighbor table
– Calculate and store rank
– Optimize routes according to the OF specification
– Validate connectivity to parent before it is chosen.

• VofC – Instantiates and wires components used by VOfP. This component
also exports the interfaces that VofP provides that can be used by other
components.

Some interfaces are defined that enables interaction between the components
used in the RPL packet, these are shown in listing 7.1 on page 70, and are:

• Rpl – The Rpl interface is used for interaction with components outside the
package, but also for internal interaction. This interface contains commands
to easily request information from RPL such as preferred parent, DAG
version, rank and whether this node is a root or not. This interface is shown
in listing 7.1a

• RplInfo – The RplInfo interface is used for communication between the
forwarding layer and RPL. It contains commands to enable link information
to be exchanged between RPL and the forwarding layer. This interface is
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shown in listing 7.1b.
• RplOF – Provides an interface for interaction between the OF and the RPL

Core. Among others, it provides methods to get preferred parents, provide
the OF with metric information from DIO messages, trigger recalculation of
parents, and reset rank. This interface is shown in listing 7.1c. This interface
is not meant to be used by users outside of the package.

• RplPacketInfo – This interface provides the necessary methods regarding the
RplPacketInfo mechanism. It validates the RPL Packet Info information in
the header, and discards packets if loops are detected. This interface works
between RPL and forwarding mechanisms. It is shown in 7.1d.

• TrickleTimer – This interface is similar to other timer interfaces in TinyOS,
and will therefore not be shown. In contains commands to configure the
timer, reset the interval, and start the timer. It also contains

RplC and RplCoreP

RplC is the glue between the components in the RPL package, and provides the
external components to be used from other packages. An overview of RplC can
be seen in figure 7.1. Three interfaces are exported, Boot as RplReady, Rpl, and
RplPacketInfo.

The Boot interface renamed to RplReady, is used to signal users when the first
preferred parent have been found. This enables users to know when communication
is possible, and they can delay message transmission until this point 1.

The Rpl interface exported by RplC enables the users to request information
from RPL. RplPacketInfo contains commands enabling the validation of RPL
Packet Information.

RplC also uses the interface SplitControl provided by ActiveMessage. The
event startDone() notifies that the radio has been started. This in turn starts Rpl:
The trickle timer is configured, and started if the node is a root. DIS messages are
also sent request recent DIO messages from neighbors.

RplCoreP is the core module in the Rpl package. It is responsible for sending
and processing DIO and DIS messages. This is accomplished using AMReceiverC
and AMSenderC. These are both instantiated twice, one for each messages type.
This means that RPL messages (DIO and DIS) are sent using the AM Layer.
RplCoreP uses the TrickleTimer interface to decide when to send DIO messages.
Additionally, two normal TinyOS timers (TimerMilliC) are used. One of these
timers is used to control DIS message transmission. The other timer is used to
control the duration of the route-poisoning period when doing a local repair.

7.3.2 VofC

VofC is the configuration component for the OF functionality. An overview of
VofC is shown in figure 7.2. VofP is the module implementing the OF. Three
interfaces are exported from VofP, RplInfo, RplOF and Rpl. RplOF is a provided
interface, which enables interaction between the OF and the RPL core. Part of this

1The use of the Boot interface for this purpose is kinda misleading, and should be changed. It
also does not provide a way to signal users if RPL has no parent.
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i n t e r f a c e Rpl {
command u i n t 1 6 _ t g e t P r e f e r r e d P a r e n t n o d e I D ( ) ;
command u i n t 1 6 _ t ge tDagVer s ion ( ) ;
command boo l i s R o o t ( ) ;
command u i n t 1 6 _ t getRank ( ) ;
command boo l l o c a l R e p a i r R u n n i n g ( ) ;

}

(a) Rpl interface

i n t e r f a c e R p l I n f o {
command vo id u p d a t e E t x ( u i n t 1 6 _ t nodeID , u i n t 8 _ t e t x ) ;
command vo id u p d a t e L i n k ( u i n t 1 6 _ t nodeID , message_ t ∗

msg ) ;
command vo id no deUnr eacha b l e ( u i n t 1 6 _ t nodeID ) ;

}

(b) RplInfo

i n t e r f a c e RplOF{
command u i n t 1 6 _ t g e t P r e f e r r e d P a r e n t ( ) ;
command boo l h a v e P a r e n t ( ) ;
command u i n t 1 6 _ t getRank ( ) ;
command vo id r e s e t ( ) ;
command vo id r e c a l c u l a t e ( ) ;
command boo l u p d a t e N e i g h b o r ( message_ t ∗ msg , d io_msg_ t

∗ p a y l o a d ) ;
e v e n t vo id p a r e n t C h a n g e ( boo l h a v e P a r e n t ) ;

}

(c) RplOF

i n t e r f a c e R p l P a c k e t I n f o {
command boo l check ( r p l _ p a c k e t _ i n f o _ t ∗ p a c k e t I n f o ) ;
command vo id i n i t i a l i z e ( r p l _ p a c k e t _ i n f o _ t ∗ p a c k e t I n f o

) ;
}

(d) RplPacketInfo

Listing 7.1: Interfaces from the RPL package.
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AMReceiverC

[AM_DIOMSG]

[AM_DISMSG]

TrickleTimerC TimerMilliC

TimerDIS

RepairTimer

LinkInfoC

AMSenderC

[AM_DIOMSG]

[AM_DISMSG]

RplCoreP VofC

RplC

Receive[...]

AMSend[...]

Trickle
Timer

Timer<TMilli>[...]

RplOF

RplInfo

Rpl

LinkInfo

Rpl
Boot as

RplReady
RplPacket

Info

SplitControlRplInfo

Figure 7.1: RplC configuration: Overview
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Figure 7.2: VofC configuration: Overview

work is also done by the RPL interface, which can exchange information such as
the RPL version.

VofP uses SoftwareInit from MainC to initialize some data structures with
during the system boot. PingC, a basic pinging component, is used to verify that
the link is bidirectional before a parent is selected. This functionality also uses the
LocalTimeMilliC component. LocalTimeMilliC offers a system time. This is used
as a timeout for links that have failed to respond to a ping, and most likely not
bidirectional, or maybe lossy.

7.4 DIO and upward routes

The RplCoreP is responsible for sending and receiving DIO messages. Together
with VofP, it saves information received by the DIO messages, this information is
later used to calculate the best routes. This section describes the implemented DIO
message structure, and the processes used to transmit and process received DIO
messages.

7.4.1 DIO Messages structure

Since this is a simplified implementation, the DIO and DIS message structure have
been simplified. Some fields are discarded, while other field’s size differs. The DIO
and DIS message structures are defined in the file "rplcore.h" in the Rpl package.

Figure 7.3 shows the implemented DIO Messages. As can be seen, some fields
have been removed, and some changed. The fields G(grounded), O, MOP(Mode
of Operation), Prf(Preference), DTSN, flags, and reserved field have not been
included in the implemented. The option field has also been removed. These fields
were not included as the functionality offered by them were not needed. Since the
AM layer is used, the DODAGID field has been reduced from 128 bit to 16 bit.
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Figure 7.3: Implemented DIO structure
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Figure 7.4: Process of transmitting DIO messages.

The version number in RPL uses a "lollipop" counter [9]. The lollipop has an
initial linear phase. When this cycle is finished, the counter enters a cycle phase.
This counter mechanism follows arithmetic from the RPL rfc, and other documents
[44, 45]. The implementation version number counter is only linear. The test
network was deployed for a longer time than anticipated. Because of this, and the
fact that the version number had to be updated more regularly than thought2, the
version number counter was increased to 16 bit for a while. Some addition fields
were added, nodeID, parentID, and seqNr. These were leftover fields from the old
implementation that never got removed. As this information is either accessible
from the header of the packet, or not necessary, these fields should be removed.

7.4.2 Transmitting DIO messages

The process of transmitting DIO messages is very simple. It is triggered by the
trickle timer. In the case that the node is a root node, the trickle timer is started
at boot. If this is not the case, the trickle timer is started when the node gets a
preferred parent. The process of DIO transmission is shown in figure 7.4.

7.4.3 Receiving and processing DIO messages

The process of receiving and processing messages is more complicated than the
transmission of DIO messages. As DIO messages are received, they have to be
processed. The processing of a DIO message starts when the receive method
provided by the AM layer is signaled. An overview over what happens is shown in

2There was a bug where the timer of the first deployed nodes acted up. Since some of the nodes
were physically unavailable, it was impossible to reprogram them. They did however trigger a data
send as the version number increased.
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RplCoreP
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TrickleTimer

TrickleTimer.stop

VofP
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information post calculateRoute()

checkVersion()

if newer 
version

Figure 7.5: DIO Receive Sequence for a non-root node.

7.5 . The first step is to compare the version number of the received DIO with the
current version. If the DIO version is newer, a global repair is triggered:

• For non root nodes, the trickle timer is stopped and the process of global
repair is started. This process is described in section 7.5.1

• If the node is a root node, the version number is increased to be larger
than the received version number. The presence of a version number in the
network larger than that of the root, indicates an error of some sort. This
therefore makes sure the whole network is updated.

For root nodes, the processing of DIO messages is finished after the comparison
of version numbers have been done. The following process is only done for non-
root nodes.

The method updateNeighbor() in VofP is responsible for further processing of
DIO messages. It compares the contents of all DIO messages against the neighbor
table. It updates the neighbor table according to the new DIO message. If a
node is new, the properties received from the DIO message is used. If the node
already exists, the information is updated. For existing nodes, the information is
updated. This involves calculating the average for link information. If certain
changes have been done to the neighbor table, or a new node have been inserted,
the calculateRoute() task is posted.

CalculateRoute() is the initial method in the parent selection process. This
process is defined in VofP, it is shown in figure 7.6.Initially, the version number
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Figure 7.6: Process of selecting a parent (calculateRoute)

in the received DIO is compared to the nodes current version. The steps involved
in this task afterward are:

1. A check is done to see if a local repair or ping is in process. If this is the
case, the task exits immediately. The task will be reposted later when either
of these processes finishes. If it exists due to an active ping, a flag is set
which instructs the ping process to repost calculateRoute laterThis ensures
new information is considered before a parent is selected. Since Ping is a
split-phase process, a calculateRoute task can be started while waiting for a
Ping reply. We do not want this calculateroute to be run, as it can interrupt
the ping process.

2. The process of finding the best candidate from the neighbor table is started.
The currently best candidate during this process is called the "desired
parent". The process of finding the desired parent starts by iterating over
the neighbor table. Each node is checked against a list of requirements that
decides if it is a usable parent or not. These requirements are:

• The nodes rank must not be INFINITE_RANK
• The resulting rank must be less than the current rank
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• The link cost must not exceed MAX_LINK_METRIC. This discards
links that are of poor quality

• The node must have the same version number. A nodes version number
is always the most recent version number found in the network

• Nodes that have been recently pinged and found to be unreachable
are not to be considered. This interval is set by PING_CHECK_-
THRESHOLD.

The outcome of this can be:
• No desired parent can be found. In this situation we do not have

any usable parents. The RplOF.parentChange(FALSE) is sent if we
previously had a preferred parent. This informs RPL that no parent is
found. RPL can then start the appropriate methods for this situation.
At this moment, this triggers a local repair. This also exits the
calculateRoute task.

• During the selection of the desired parents, a node is selected as the
desired index if it provides a better resulting rank than the currently
selected preferred parent. If the resulting ranks are equal, the node
with the best signal strength is selected as the desired parent

3. If a desired parent have been found, it is compared to the current preferred
parent. If the rank increase does not exceed the threshold (PARENT_-
SWITCH_THRESHOLD) from the OF configuration, the old preferred
parent is chosen. This is part of the hysteresis function from MRHOF. There
are some exceptions to this rule:

• The preferred parent rank is larger than the current rank. This means
that the preferred parent is invalid and cannot be used.

• The preferred parent is the desired parent and its rank have been
decreased. In this case the process continues to decrease the advertised
rank.

4. If connectivity to the desired node has not been validated recently, a Ping
process is started. This is not done if the desired index is the same as the
parent node. The ping process has two options: a timeout, and the amount of
retries. The neighbor table is updated with the ping information. The ping
process has two outcomes:

• A ping reply was not received. The link is therefore not verified to
be bidirectional, and should not be used. The desired parent node is
invalid. This restarts the calculateRoute process.

• A ping reply was received. This verifies that the link is bidirectional.
If someone have reposted the calculateRoute, new information is
available, and the process of finding a parent restarts. If this is not
the case, the desired node is chosen to be the preferred parent. This is
done by selectPreferredParent()

If a link has been previously verified within a given period (PING_CHECK_-
THRESHOLD), the Ping process is skipped, and selectPreferredParent is
posted right away.

5. selectPreferredParent() is posted. It updates the current preferred parent,
updates the rank, and sends the appropriate signals to inform RPL of
changes.
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7.5 Repair mechanisms

RPL specifies two types of repairs: global and local repair.
The global repair updates the whole network. All the nodes are free to choose

the rank they want. This implementation supports global repair.
RPL allows a node to perform local repair by increasing its rank by an amount

of MaxRankIncrease compared to the least advertised rank in the current version.
MaxRankIncrease is decided by the root node. This variable ensures that node are
not too greedy. This type of repair has not been implemented, but work on this was
started. The second local repair mechanism allows a node to set INFINITE_-
RANK. After this it has to poison the network to make sure it is not selected by its
sub-DODAG. After this it can freely choose the rank it wants.

7.5.1 Global Repair

Root node

Only the root can trigger a global repair. The root goes through the following
process when initiating the global repair:

1. The version number is incremented. If a version number has been received
in a DIO from a neighboring node, the version number is incremented to be
larger than this.

2. The trickle timer is restarted to quickly spread the new version to the
neighbor nodes.

As can be seen, this process is very simple for the root node.

Non-root nodes

For non-root nodes the process of a global repair starts when receiving a DIO
message containing a newer version number than the nodes current version number.
In the implementation, a node joins a new version as soon as it has been detected.
An overview of the global repair in non-root nodes can be seen in figure 7.7, it is:

1. A DIO with a new version has been processed.
2. The Trickle timer is stopped.
3. The current version number is updated.
4. The call RplOF.reset() is called. This causes to RplOF to reset its rank

and haveparent property. This enables the OF to choose freely without any
restrictions on rank.

5. The OF sees the new version number and thus chooses a new parent.
6. When the OF signals RPL that a parent have been found, the trickle timer is

reset and started.
7. The DIO messages that are sent now use the new version number. This

causes members in the sub-DODAG to update to the new version

7.5.2 Local repair

Local repair is different from global repair in that it is only specific to a certain node
at any given time. This does however not mean that other nodes are unaffected by
local repairs. Nodes in the local area and sub-DODAGs are affected, but other parts
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Figure 7.7: Global repair in a non-root node
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of the network are not. Local repair is initiated by the node in need of a repair. This
is done in RplCoreP, and is triggered by a signal from RplOF that a parent has not
been found. This signal is only triggered if preferred parent already existed. The
interaction between components during the local repair is shown in figure 7.8. The
flow of the mechanism is:

1. A signal is sent from RplOF that no new parent is found. This signal is only
sent if a node had a parent, but now can not find any new.

2. The TrickleTimer is stopped.
3. The DIS timer is started. When this timer expires, the node sends DIS

messages. This in turn leads to new DIOs, which update the neighbor
information. This delay should be very short if used.

4. The repair timer is started with a length of LOCAL_REPAIR_DELAY. This
timer enables the node to find a new parent within its current rank restrictions
from the new information from the received DIOs.

• If a node is found during the the repair delay. The delay timer is
stopped. This also stops the local repair process.

5. If a new parent is found before the poison delay timer has finished, the timer
is stopped and normal operation continues. If no parents are found, the timer
triggers, and route poisoning is started.:

(a) The RplOF.reset command is called. This sets the rank to INFINITE_-
RANK.

(b) The trickle timer is reset and started.
(c) A Timer is started to control the duration of the route poisoning. When

this timer is running, RplOF is not allowed to choose any parents.
(d) DIO Messages with INFINITE_RANK is transmitted. This poisons

this nodes entry in receiving nodes neighbor tables other. Nodes in the
sub-DODAG thus have to find a new parent.

6. When the poison timer is finished, a route recalculation is triggered. The
node is now at INFINITE_RANK. This enables the node to consider all
possible parents.

7.6 Message forwarding

A simple layer 3 forwarding/routing layer has been implemented. Active-
Message (AM) is the standard TinyOS layer 2 framework. It offers single hop
communication. An independent layer 3 forwarding mechanism was not found in
TinyOS. An exception to this is BLIP2.0, which we were unable to use because
of compatibility issues. Layer 3 communication was thus implemented in the
DataSend package. DataSend provides a very simple forwarding mechanism. As
its only purpose was to enable data-collection, a route to the root node was the
only routing information needed. A separate routing table has therefore not been
created. DataSend uses the preferred parent for all forwarding. The addresses used
in Layer 3 are currently identical to the AM addresses. Additionally, an address
have been assigned to the computer connected to the root node through the serial
port.

DataSend does not currently use any form of multiplexing or message types. It
can therefore currently only be used by one upper layer component.
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Figure 7.8: Local repair sequence diagram.
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Figure 7.9: Overview over DataSendC

7.6.1 Overview

The DataSend package is a relatively small package. It consists of two components,
DataSendC and DataSendP. DataSendP is a module containing the logic in the
application, while DataSendC wires the necessary components together, and
exports usable interfaces for users outside the package. An overview of DataSendC
is given in figure 7.9. DataSendC exports three interfaces, Receive, DataSend, and
Intercept. DataSendP uses the interface Rpl from RplC to get preferred parent and
routing information. The RplPacket from RplC is used to approve packets that are
to be forwarded according to the RPL packet information. RplInfo from RplC is
used to update link information in Rpl. This includes information about received
packages, and experiences made when forwarding. This enables path costs like
ETX to be updated.

DataSendP uses some components for transmitting and receiving messages.
AMSenderC is used for radio transmissions, and SerialAMSenderC is used for
serial transmissions. AMReceiverC is used to receive messages from the radio
destined for this node. Additionally, AMSnooperC is used to receive messages
intended for other nodes. This enables more link information updates to RPL.

DataSendP uses QueueC as a messages queue. QueueC offer simple FIFO
queues. The queue contains pointers to message_t buffers. Since dynamic memory
allocation is strongly discouraged in TinyOS, a pool (PoolC) is used for message_-
t buffers. PoolC statically allocates a given amount of message buffer objects,
which can be retrieved or inserted into the pool. Instead of dynamically allocating
a message buffer, a message buffer is retrieved from PoolC. PoolC holds a given
amount of message_t objects, this amount is given at compile time.
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Figure 7.10: DataSend message structure

Active Message
Layer

AMHeader AMPayload AMFooter

DataSend Layer DataSend PayloadHeader

Application Layer Application Payload

Figure 7.11: Packet layering

Message format

DataSend inserts its own header into a message_t payload area, the message
structure used by DataSend is shown in 7.10. It consists of a layer 3 source and
destination address, the RPL packet information, and application payload. Figure
7.11 shows how the layer encapsulates the packets.

7.6.2 Sending messages with DataSend

Messages are sent with DataSend using the DataSend interface. This interface is
shown in listing 7.2a. This interface is very similar to the AMSend interface used
with the AM layer, but has a few changes. First, there is no sendDone command.
The upper layer has therefore no way of knowing if, or when, a package has been
successfully sent. For this reason, a local message_t* buffer is not kept like with the
normal AMReceive. The getMessage command is introduced for this reason. This
command returns a message buffer from the DataSend pool. Care must be taken in
the application to not drain the pool for messages, as this will stop DataSend from
also being able to forward messages.

1. DataSend.send(...) command is called from the application layer. This
command specifies destination address, message buffer and payload size.

2. DataSend checks if a preferred parent exists, that the payload size does not
exceed the maximum allowed payload size, and that the message queue is
not full. If either of these fails, an error is returned from the send message,
the message is put into the pool, and the process stops.
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i n t e r f a c e DataSend {
command message_ t ∗ ge tMessage ( u i n t 8 _ t l e n ) ;
command vo id ∗ g e t P a y l o a d ( message_ t ∗ msg , u i n t 8 _ t l e n )

;
command u i n t 1 6 _ t g e t D e s t i n a t i o n ( message_ t ∗ msg ) ;
command vo id s e t D e s t i n a t i o n ( message_ t ∗ msg , u i n t 1 6 _ t

add r ) ;
command u i n t 8 _ t maxPayloadLength ( ) ;
command e r r o r _ t send ( u i n t 1 6 _ t d s t , message_ t ∗ msg ,

u i n t 8 _ t l e n ) ;
}

(a) DataSend interface

3. DataSend initializes the message with source and destination address.
4. The RPL Packet Information is initialized by calling RplPacketInfo.initialize().
5. The message is put enqueued for transmission (MsgQueue). This queue is

used for all messages awaiting transmission. If this is successfully done, the
task queueSend is posted, and SUCCESS is returned. If not, the message
is put back into the pool, an error message is returned and the process is
canceled.

The flow of queueSend is:
1. QueuePost exits if the outgoing queue is empty
2. If a transmission is active, the task is reposted, and exited.
3. The destination address of the message is checked.

• If the destination is the computer and the node is root, the message is
transmitted on the serial port with an acknowledgment requested

• If this is not true, the message is forwarded to the preferred parent on
the radio link.

Since radio and serial both use AM, this is done by calling send on either the
serial component, or the radio component.

Since send is a split-phase, the succession of either of the sendMessages is signaled
with a sendDone event. Both of these sendDone follow the same flow:

1. If an acknowledgment was received, the message is ok.
(a) The etx average variable is updated according to according according

to the number of retransmissions
(b) The message object is removed from the top of the queue.

2. If the message was not acknowledged it is retransmitted. The max amount
of retransmissions is given by NOACK_RETRY.

3. If the maximum amount of retransmissions have been done, the
RplInfo.nodeUnreachable() command is called. This notifies RPL that the
node is not accessible, and the link quality information in the Rpl neighbor
table is reduced. This also triggers a route calculation.

4. When the message has been successfully transmitted or met the maximum
amount of retries, it is removed from the queue and put back into the pool.
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7.6.3 Receiving and intercepting messages

Two receive interfaces are exported from DataSendC: Receive, and Intercept.
The Receive interface is implemented in TinyOS and is shown in listing 6.13 on
page 51. The receive interface is used for messages which are destined for this
node. The intercept interface is used to intercept messages that are to be forwarded
by the node. This enables the application to alter messages that are forwarded.
This was implemented to be able to record link information as a message traversed
nodes towards the root node. The buffer-swap policy is still used with Receive, but
is slightly changed for Intercept. In Intercept, buffer swap is not used. DataSendP
ignores the return value of this signal, and the same message buffer is used.
The implementer of the intercept interface must therefore not do any processing
whatsoever on the message after the Intercept.receive() method has finished.

An overview of what happens on message reception is:
1. DataSendP receives a receive() signal from the AM layer.
2. DataSendP signals RPL that a packet has been received. This is used to

update link information.
3. If the message pool is empty, or the receiving queue full, the message is

discarded, and the message buffer sent back to the AM layer.
4. If the message queue is empty the task exits immediately
5. The messages destination is checked.
6. If we are the destination, the receive method in the receive interface is

signaled. The returned message buffer is put back into the pool.
7. The Rpl Packet information is checked. If this check returns an error, the

message is discarded and the buffer put in the pool, and the process ends
8. If we are not the destination, the receive method in the Intercept interface

is signaled, this allows the application layer to intercept messages that are
forwarded.

9. If the message queue is full the message is discarded and put back into the
pool. The method then exits.

10. The message is enqueued to the message queue, and the task queueSend() is
posted.

7.6.4 Snooping around for RPL

DataSendP also uses the Receive interface from AMSnooperC. AMSnooperC is
used to snoop messages that are not received by AMReceiverC. The message
received from this interface is used to update link information in the neighbor table
on received data packets.

7.7 Hardware dependencies

During the development of the application, TOSSIM was used heavily to test
that the code was working as wanted. Some HAL interfaces have been used
in order to be able to acquire certain information. To be able to compile the
application seamlessly for the platforms used (TOSSIM and IRIS), some wrappers
were created that made this work easier. The two most important wrappers are
LinkInfo and Sht11Wrapper.
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LinkInfo

Link information has been used in Rpl for finding link quality, and also measure by
the application. This information is stored in the metadata field in the message_t
buffers. Specific interfaces have to be used in order to access these fields. These
interfaces differs between radios, and are not exported by the hardware independent
ActiveMessageC.

The LinkInfo interface provides a common interface to access the radio link
metadata. Used with the LinkInfoP and LinkInfoC component, it enables access to
link information for iris and tossim platforms.

Sht11Wrapper

Is used as a wrapper for the sensors that were used. The sensors are used on
the IRIS platform, while random values are used for the tossim platform. The
configuration Sht11C wires these depending on the platform used.

RplPowerC

RplPowerC is a wrapper used to get voltage. This returns the voltage for the IRIS
node, and a random value for TOSSIM, as no concept of energy exists here.

7.8 Application using RPL and DataSend

In order to use the Rpl and message forwarding code in DataSend, an application
was built on top of this. This application was made to collect information from
a sensornetwork in a church. This scenario will be described more closely in
chapter 8. This application would use the MTS420 sensor board, and report
data and humidity information to the base station node with 5-minute intervals.
Additionally, this application would also gather link information for the first hop
taken by the packet, and an average amount of transmissions before successfull
acknowledgment. An overview over this application, called MeasureAppC can be
seen in figure 7.12.

The MeasureAppC receives the booted signal from RplReady, meaning that
RPL has found a preferred parent. This triggers the timer in MeasureAppC to start,
and the sensors to be read. Each sensors read method in parallell as described in
section 6.7. A timer is started that waits for a little time, enough for the sensors to
be read. When this timer fires, a packet is sent using DataSend.send(). In addition
to humidity, temperature and voltage readings, this message includes the preferred
parent node id, the DODAG version, and the ETX experienced by DataSend. A
new timer is now started with the data-reporting interval, which triggers a new
sensor reading in a given amount of time. The application payload can be seen in
figure 7.13.

MeasureAppC utilizes DataSend.intercept(...) in order to also record informa-
tion about the next hop. Upon forwarding a message, DataSend.intercept(...) is
signalled. MeasureAppC logs the RSSI and LQI values from the packet if it is the
first hop for the message.

The resulting stack can be seen in figure 7.14
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Chapter 8

Deployment, results, and analysis

This chapter will introduce the environment and the use scenario for the wireless
sensor network. Results will also be shown and analysed.

Section 8.1 describes the church in Laksevåg, and why a WSN is needed in
this church. The deployment of nodes in the church is described in section 8.2.
Some practical challenges that were met are described in section 8.4. Results and
analysis of the running network is thereafter described in 8.5

8.1 Church of Laksevåg

The church of Laksevåg is a wooden church originally built in 1874. Some
renovations and extensions have been made to the church later (1919-1935). A
picture of the church can be seen in figure 8.1. The church consists of a main part,
where the church spire is. This is the part of the church where the deployment of
the WSN will take place. An extension to the main part can be seen at the left side
at the main church. The church is quite old, and amongst its inventory are old and
valuable paintings, and a church organ, all of which contain historical and cultural
value, and should be taken good care of.

Environmental challenges

Like many old buildings, the church in Laksevåg is not very well isolated.
Electrical heaters are used in order to keep the rooms warm; this in turn causes
the air to become dry. As the electrical heaters are used much during cold winter
periods, this actually makes the air so dry that the paintings are in danger of
drying up, and the organ can take damage. To prevent this from happening, an
air humidifier is being used to increase air humidity. This in turn creates a different
problem. When warm and humid air meets cold surfaces, condensation is created.
This happens when the warm and humid air ascends and meets the cold roof. This
condensation might cause the building material to rot. Care must therefore be taken
that the air humidity is kept within acceptable values: humid enough to protect
paintings and the organ, but not too humid as this can damage building structures.

A good monitoring solution would be able to provide valuable information
in order to optimize the use of the air humidifier. Temperature and humidity
information from several critical locations could be monitored and provide
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Figure 8.1: Church of Laksevåg

information needed for both of these interests. A WSN can easily provide the
needed information. Nodes can be placed in the critical areas, and provide
information about temperature and humidity. Due to the small size of nodes, and
no need for infrastructure, a test could easily be deployed. A scenario like this was
perfect for a test, it provided valuable information for the church environment, and
was an excellent chance to get an idea how the implementation worked.

8.2 Node deployment

In order to gather the needed data, a number of nodes were placed throughout the
church. Two factors decided the location of these nodes. Some nodes were first
placed in locations were monitor information was wanted. Some of these locations
are (see figure 8.2):

• Ceiling – A sensor node was placed above the ceiling of the church room,
but beneath the upper roof. This is a location that could be badly affected by
humidity (node 1).

• Art and organ– Some sensor nodes were placed close to locations where the
air should not be too dry (node 3, 7, 10).

• The church bells - One sensor node was placed all the way up by the church
bells (node 14).

The other critical location was the location of the base station. Electrical power,
and more size was needed for the base station, as it would be connected to a
computer. An Internet connection was also preferred to be able to read monitor
data in real time from other locations. The computer was therefore placed in an
office next to the church main room. The base station (node 0) was located right
above the computer.

In order to ensure good connectivity, nodes were spread out between the
already placed nodes, and the base station. This would increase the chance of good
connectivity, as physical distance between nodes was reduced. A total amount of
13 nodes were deployed, excluding the base station. All nodes except the base
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Figure 8.2: Node locations

Node locations are shown here. Arrows at the side of a node indicates height difference
from the shown level. The amount of arrows indicates a rough description as to how many
levels above or below a node is. An arrow pointing up means the node is above, while an
arrow down means below. In (c), the church organ on the second floor can be seen in the
back of the room, above the exit. The most used hops from implementation 3 are marked
with arrows between nodes. Note that this is not necessarily a topology that has actually

been used.
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station were equipped with mts420 sensor boards.
The location of the nodes can be seen in figure 8.2. A node is marked as a

circle, with the node id denoted inside. The arrows show the preferred parent that
has been used to forward most packets for each node. Node 0 is the base station,
and is connected to a computer with an Internet connection. Node 14 is in the spire
with the church bells, and is the node furthest away from the base station. The spire
can be seen in figure 8.1.

8.3 Base station operation

8.3.1 Storing data from the nodes

A computer application was developed to receive and store the received data
from the WSN. The application was written in python. It uses message interface
generator to access the necessary fields in packets that are received using serial
forwarder. Serial forwarder also allows us to check debugging messages from the
base station simultaneously.

The data gathering receives and stores information using the producer-
consumer principle. Two threads, and a shared queue is used. The producer thread
receives packets and enqueues them into the shared queue. This thread signals the
consumer thread when a new packet has arrived. The consumer thread reads the
queue, and stores the information in three different ways:

• Comma-separated value (CSV) files are created for all received packets.
• A database is updated through the internet connection.
• CSV files are created for information that did not make it to the database.

This allowed for easily updating the database if connectivity was disrupted,
or other failures occurred.

The information stored in the database consists of raw values directly from
the sensors. This removed the possibility of wrongly calculating the human read
values. In order to reduce processing time needed to convert these values every
time information was requested from the database, a materialized view (MV) were
created. Insert to the main database triggers updates to the MV. The MV is thus
an always-updated copy of the main database, but with pre-calculated values. This
greatly reduces loading time.

8.3.2 Web interface

A web interface was created in order to provide easy access to temperature and
humidity. This interface is shown in figure 8.3. The interface shows a temperature
graph, and a humidity graph, containing information from all nodes. These graphs
are made using the highcharts javascript Application Programmin Interface (API).
The user is able to zoom the graphs, and change the timescales. The information
shown in the graph is averaged to reduce the amount of data it takes to load the
site. The graphs shown are updated as the user changes timescale or zooms. The
graph thus provides reasonable time resolution even if the user zooms in, but does
not need to load this information if a big timescale is used. Users also have the
ability to turn on/off the display for any given node.
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Figure 8.3: Screenshot of web interface presenting measured humidity and
temperature.

8.4 Practical challenges

8.4.1 Challenges when deploying the network

During the deployment of the network some practical issues were encountered.
These were annoying, but mostly fixable.

Timer gone wrong

As the nodes were deployed, every node was turned on when being placed in its
locationA web interface was created in order to provide easy access to temperature
and humidity. This interface is shown in figure 8.3. The interface shows a
temperature graph, and a humidity graph, containing information from all nodes.
These graphs are made using the highcharts javascript api. The user is able to
zoom the graphs, and change the timescales. The information shown in the graph
is averaged to reduce the amount of data it takes to load the site. The graphs shown
are updated as the user changes timescale or zooms. The graph thus provides
reasonable time resolution even if the user zooms in, but does not need need to
load this information if a big timescale is used. The user also have the ability to
turn on/off the display for any given node. The base station was the last node that
was set up. This caused the nodes to promptly wait for DIO messages and establish
routes before initializing any data transmissions. As the base station was turned on,
information was received from all nodes, but only once. A different timer interval
had been used during testing of the nodes. As a last step of making the nodes
ready, the timer value had therefore been changed. The timer was explicitly set as
an unsigned by appending the letter u after the number. This did not work very
well, and the timer did not seem to be triggered at all.

A new timer value was set which made the nodes operate as intended. The
nodes thus had to be reprogrammed. This was possible for all nodes, except the
node in the church bell tower. Only some people were allowed to access this area
for security reasons. Therefore, the node in the tower was not reprogrammed.
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Since the data reporting also were triggered by RPL global repair, the global repair
timer was reduced in order to be able to get some information from this node.

Computer crashes

A raspberry pi was first used as the computer that was connected to the base station.
After a couple of days, it decided to crash. Similar crashes had already happened
a couple of times prior to deployment. Another computer was therefore brought to
the church and replaced the raspberry pi.

8.5 Experiences with the routing protocol

Two versions of the RPL implementation were used during the deployment of the
network. The first version ran for about 2 weeks. Experiences from this test
led to some improvements that were deployed during a second run. Some bugs
were found after the second implementation was deployed. These have later been
improved and been tested in TOSSIM, but are not yet tested in a real deployment.
Additionally the calculation from LQI to ETX was changed, as this had been done
wrong in the first test.

8.5.1 The first implementation

The first implementation that was deployed did not have all the functionality that
has been described earlier. Some details of the first deployment is listed below:

• DIO messaged were used to update the neighbor table and trigger the
recalculation of the preferred parent.

• Neighbor information was updated from received DIO messages. Updating
this information also triggered recalculation of the preferred parent.

• Global repair was implemented and working as intended. Global repairs
were triggered regularly be the root

• Local repair was not enabled because of some uncertainty as to how this was
working.

In this deployment, the minimum trickle timer interval was 256ms, and the
maximum 1.15 hours. LPL was enabled for normal nodes with a sleep period of
64ms. Parent For both deployments the root node had a sleep interval of 0, but
used LPL techniques when transmitting messages to make sure they were received
by LPL enabled nodes. Both implementations used a data-reporting interval of 5
minutes. Implementation errors caused the calculated ETX to be 1 when LQI was
larger than 240, and 2 when the LQI was lower than 240. Both implementations
used a parent switch threshold of 2.

Issues in the first implementation

Changes in links are one of the typical characteristics of LLN. Link quality can be
highly affected by node positioning, and by external factors. A situation where
this occurred led to reduced network connectivity during the first deployment.
This situation was studied, and some conclusions that led to improvements were
made. Node 13 was placed inside the pulpit at the floor that can be seen at the
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Figure 8.4: Link quality reduction between node 13 and its preferred parent

This figure shows retransmissions and LQI between node 13 and its preferred parent. The
maximum amount of retransmissions are 6. A new preferred parent is selected at

sequence number 853

right side of the picture in 8.2c. This pulpit was moved for some events. Radio
communication between this node and other nodes could easily be a subject to
obstructions caused surrounding people. Figure 13 shows a situation where this
most likely happened. The preferred base station for node 13 was the base station
(node 0). This link is working optimally with no retransmission, even though the
LQI is not very high. After a while we can see the LQI dropping, and the number of
retransmissions increasing. The nodes were configured with a maximum amount
of 6 retransmission attempts before dropping a packet. This limit was reached by
node 13 trying to reach the preferred parent many times. As the interval between
sequence-numbers were 5 minutes, this situation did not change for over 2 hours,
which is too slow for errors like this. After a while a global repair was triggered.
Node 13 joined the new version at number 854. The base station was replaced
as the preferred parent by node 10. This resolved the situation, and node 13 did
not have to do any retransmissions to reach its preferred parent. Some conclusions
were made from this situation, and some improvements implemented. Some of
these conclusions were:

• Due to long intervals between DIO messages, the link information was not
updated very often. The information in the neighbor table was therefore very
old, and could not be used to safely find the routes. The global repair fixed
this by resetting the trickle timer and updating the neighbor table.

• Since there was no interaction between the forwarding layer and RPL, there
was no way that RPL could know that a bad route was chosen. RPL could
therefore not fix a bad situation like this.
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LQI ETX
>220 1
>200 2
>180 3
>160 4
>140 5
>100 7

All else +21

Table 8.1: LQI thresholds and link penalties in implementation 2

8.5.2 Improvements to the first implementation

In order to improve the results from the first deployment, some changes were made:
• Interaction between DataSend and RPL was introduced in order to keep the

link information in the neighbor table more up to date. Message snooping
was used in order to get this information from nodes that were not sending
messages directly to this node

• A command was created that let DataSend signal RPL that the preferred
parent was unavailable. This command decreased the metric associated with
the preferred parent, and also marks it as unreachable. Both of these would
ensure that the node would not be considered a parent in the next calculation,
and also would have to regain its LQI before being chosen as a new route.

• Local repair should be enabled in order to let nodes choose new parents if no
parents could be chosen within the given rank restrictions.

8.5.3 The second implementation

The second implementation introduced some of the changes discussed in the pre-
vious section. The nodes were deployed in the same locations, but reprogrammed
with the new implementation. In order to try to increase network lifetime, the LPL
sleeping interval was increased from 50 to 320ms. When using broadcast messages
with LPL, the messages cannot be stopped transmitting upon reception of an ac-
knowledgment. The minimum DIO interval was therefore increased to 512ms, in
order to be larger than the sleep interval of the LPL.

For the second implementation, the link cost thresholds were changed to be
more like the intended values described in chapter 5.2. In the first implementation,
a human coding error caused all links with a LQI above 240 to get an ETX of 1,
and all else to get an ETX of 2. In implementation 2 this threshold was reduced,
and several more thresholds were introduced, which can be seen in table 8.1.

Problems during the second implementation

The second implementation showed some problems were many nodes disappeared
simultaneously. This behavior will be described later, but was mostly caused by a
bug where changes to the preferred parent node were not considered if the better
route did not exceed the parent switch threshold. This bug also caused the rank
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Figure 8.5: Hop number in RPL versions during the two implementations

of a node to not get affected by changes in the parents node, especially when the
parent’s node was increased.

8.6 Analysis

8.6.1 Hop count

Figure 8.5 shows the average and maximum number of hops for implementation
1 and 2. The average and maximum number of hops is pretty stable in
implementation 1, where it averages around 2 hops, with a maximum at 3 or 4 hops.
The situation for implementation 2 shows a very different routing topology. It
starts at an average of about two hops, but then gradually increases. The maximum
amount of hops is 8, and the maximum average is 4. This is a seems like an
extremely high amount given that there are 10 active nodes at the time (see figure
8.6), and the first implementation showed much smaller hop counts. This was
clearly not a good solution

The situation of a very large hop count seems to improve again at 220 hours,
but looks can be deceiving. The hop count drop is caused by a drop in the active
number of nodes, and these nodes had some of the longest routes. Figure 8.8
shows us that many of the disappeared nodes were within the energy requirement
for operation (2.7 to 3.6V) [46], and low remaining energy was therefore most
likely not the cause of the lost connectivity. It would also be weird if that many
nodes lost battery at the same moment.

Figure 8.7 shows the routing topology right before many of the nodes
disappears. We can see that many of the nodes that are close to root chose weird
routes. Take for instance node 2, which is in the same room as the base station,
but chooses the preferred parent of 9, making the route to the base-station 2->9-
>13->10-0. Many of the nodes that had the base station as the preferred parent
in the first implementation (see fig 8.2c), are now taking very long routes. It can
be seen that one of the nodes that disappears has low remaining battery voltage.
Studying the data shows that this is node 11. Since this node works as a router for
4 nodes, it is likely that this node lost communication to its preferred parent (not

95



8.6. ANALYSIS

0 50 100 150 200 250 300

Hours

4

6

8

10

12

14

ac
ti

ve
n

o
d

es

Implementation 1

Implementation 2

Figure 8.6: Number of active nodes during the two implementations

Note that there should be one less active node in the second implementation, as battery
replacement was not possible for node 14 due to restricted access to the area.
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Figure 8.7: Weird routing topology

necessarily because of low battery), and brought all the other nodes with it. The
implementation bugs that existed in this implementation could cause the nodes to
not care about the increased rank for example used doing local repair, and thus
not notice that the preferred parent became invalid. Another bug also caused the
calculated rank associated with a parent node and its link to overload and wrap over
to zero. The wrapping would cause an invalid parent to seem like a much better
parent. If the path cost between a node and this parent were 1, the resulting rank
would be 0, which would in turn be better than the DODAG root.

The major difference in the hop count between the first and second implemen-
tation is most likely caused by the more conservative values used in the LQI to
ETX calculation. Additionally, it is likely that bugs made these long routes extra
bad, as changes in rank to the preferred parent was ignored.
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Figure 8.8: Battery voltage for all nodes during the two implementations

8.6.2 Battery

Figure 8.8 shows the battery voltage in all the nodes in the network. We can see that
5 nodes have less voltage than the remaining nodes. 5 out of the deployed nodes
have a sensor board with GPS units equipped. It is not known which nodes this is,
but there is a chance that these are the nodes with less voltage. The large initial
drop in voltage seen almost instantly in these nodes causes this belief. If these are
not the nodes with GPS units attached, these units are most likely forwarding many
messages, or located in an area with much over hearing between neighbors.

8.6.3 Packet Reception Ratio

Although no numbers are represented, there has been a high Packet Reception
Ratio. Numbers in the first implementation would be kinda useless, as the
missing local repair would lead to a lot of packet loss during bad periods. The
deployment has provided measurement for most of the expected 5-minute interval
measurements, besides these.

97





Chapter 9

Conclusion

This thesis has implemented and deployed a WSN using TinyOS and RPL. The
Minimum Rank with Hystersis Objective Function (MRHOF) is used with the ETX
metric.

A test was done to find the correlation between link properties like Link quality
indicator (LQI) and channel energy against Packet Reception Ratio (PRR). A large
correlation between average LQI and PRR was found.

ETX is a widely used metric in WSN as it accounts for loss ratio and link
asymmetry, and provides routes with a reasonable hop count. The ETX is usually
calculated using information based on real communication, this information can be
obtained using probes. These probes create network overhead, and thus increases
radio energy consumption. This technique is therefore not very suitable for WSNs.
Several RPL implementations use an approach where ETX is given an initial value,
which is updated when the link is being actively used. This initial value can be
either high, which can prevent the best parent from being tested and thus selected,
or it can be low, leading to many switches between parents. This thesis proposes
to use LQI to calculate the initial ETX values. The calculated ETX can provide a
good guidance for the experienced ETX. Using the LQI does not increase network
overhead, but still keeps value up to date for all nodes. TinyOS uses BoX-MAC
2 for Low Power Listening. This MAC layer detects channel activity using CCA,
and keeps the radio awake for the next packet if activity is detected. Since the radio
always reads a complete message, all packets can be used to update the LQI values
without increasing power consumption. This enables us to easily keep the LQI up
to date.

A WSN has been deployed where the ETX is directly calculated from LQI,
without taking much account for experienced ETX. Results from this shows that
the calculation from LQI to ETX is of great importance. A conservative approach
for the LQI to ETX calculation led to routes with very large hop counts. Tests
from a less conservative approach showed routes with shorter hop counts, but
still with high delivery ratios. It is possible that some of these results are due
to implementation errors that have later been resolved but not tested, this is left for
future work.

The deployed network did serve its purpose of gathering temperature and
humidity from the environment with a low loss ratio. The operating lifetime of
the network was a bit disappointing. The Low Power Listening (LPL) sleeping
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period, which controls the duty cycling of the radio, was increased in order to try
to gain a longer lifetime. This did not give any clear results, as an implementation
bug seems to have cause nodes to loose connectivity before they were out of power.

The implementation bugs are most likely fixed, but have not yet been tested in
the real life deployment.

9.1 Future work

Some future work is proposed. The bug fixes in the implementation should first
be checked. Further experience with the LQI to ETX calculation would also be
beneficial. The results from the last implementation shows a situation where routes
with a large hop count is used. The first implementation shows that shorter routes
with good delivery ratios existed. The long routes in the second implementation
are most likely a result of choosing a calculation from LQI to ETX that is too
conservative. Less conservative values should be tested for this calculation.

The current implementation only accounts for the experienced ETX if a node
is unreachable. The experienced ETX should be used to a greater extent. This
could for example be done using a correction value for the LQI calculated from the
actual ETX. This would make the LQI to ETX calculation work more like an initial
value, which could be a great improvement over similar methods. This calculation
is however very hardware dependent as the calculation of LQI is not standardized
in any way.
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